•   BioMed Central
  • Journals

spacer

spacer 4.03
Search for
Advanced search

Cell Communication and Signaling
  • Volume 10
Tools
  • Download references
  • Email to a friend
  • Order reprints
  • Post a comment
spacer Research

Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

Mi-Sun Koo, Selvakumar Subbian and Gilla Kaplan

For all author emails, please log on.

Cell Communication and Signaling 2012, 10:2 doi:10.1186/1478-811X-10-2

Published: 26 January 2012

Abstract (provisional)

Background

Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM) to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB.

Results

In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours) immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878.

Conclusions

In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of a deregulated host cell lipid metabolism favored a less stressful intracellular environment for HN878. Our findings suggest that the ability of CDC1551 and HN878 to differentially activate macrophages during infection probably determines their ability to either resist host cell immunity and progress to active disease or to succumb to the host protective responses and be driven into a non-replicating latent state in rabbit lungs.

The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production.


gipoco.com is neither affiliated with the authors of this page nor responsible for its contents. This is a safe-cache copy of the original web site.