Home » Meteor Science » Meteor Shower Calendar

IMO Meteor Shower Calendar 2011

Other languages:
  • Русский

Contents

  • Introduction
    • Antihelion Source
  • January to March
    • Quadrantids (QUA)
    • α–Centaurids (ACE)
    • γ–Normids (GNO)
  • April to June
    • η-Aquariids (ETA)
    • η-Lyrids (ELY)
    • June Boötids (JBO)
  • July to September
    • Piscis Austrinids (PAU)
    • δ–Aquariids (SDA)
    • α–Capricornids (CAP)
    • α–Aurigids (AUR)
    • September ε–Perseids (SPE)
    • δ–Aurigids (DAU)
  • October to December
    • Draconids (DRA)
    • Leonis Minorids (LMI)
    • Leonids (LEO)
    • Phoenicids (PHO)
    • Puppid-Velids (PUP)
    • Ursids (URS)
  • Tables
    • Table 1 - Optimum radiant diameters
    • Table 2 - Error limits for the angular velocity
    • Table 3 - Angular velocities
    • Table 4 - Lunar phases for 2011
    • Table 5 - Working list of visual meteor showers
    • Table 6 - Radiant positions during the year in α and δ
    • Table 7 - Working list of daytime radio meteor showers
  • Abbreviations

Compiled by Alastair McBeath. Based on information in "Handbook for Meteor Observers", edited by Jürgen Rendtel and Rainer Arlt, IMO, 2009 (referred to as 'HMO' in the Calendar), and "A Comprehensive List of Meteor Showers Obtained from 10 Years of Observations with the IMO Video Meteor Network" by Sirko Molau and Jürgen Rendtel (WGN 37:4, 2009, pp. 98–121; referred to as 'VID' in the Calendar), as amended by subsequent discussions and additional material extracted from reliable data analyses produced since. Particular thanks are due to Rainer Arlt, Jeff Brower, David Entwistle, Esko Lyytinen, Jürgen Rendtel and Jérémie Vaubaillon for new information and comments in respect of events in 2011.

Introduction

Welcome to the twenty-first International Meteor Organization (IMO) Meteor Shower Calendar, for 2011. The year starts brightly enough meteorically, with the Quadrantid peak perfectly-timed for new Moon, followed by favourable returns for the α–Centaurids and η–Aquariids, but the later-year major showers are all quite to very badly moonlit. The Draconids may yield some activity in October, sadly close to full Moon too, and the almost-unknown ε–Eridanids could produce equally moonlit rates in September. There are changes to some of the less active sources based on the latest IMO video analyses, including for the near-Auriga showers of September-October, and for the Southern Taurids especially. There are always other minor showers to be monitored of course, and ideally, meteor observing should be carried on throughout the year to check on all the established sources, and for any new ones. Such routine monitoring is possible now with automated video systems especially, but we appreciate not everyone is able to employ these, and that observing in other ways regularly is impractical for most people, so the Shower Calendar has been helping to highlight times when a particular effort might be most usefully employed since 1991.

The heart of the Calendar is the Working List of Visual Meteor Showers, Table 5, which has been undergoing a thorough revision in the last few years, a process that is still underway, in order to help it remain the single most accurate listing available anywhere today for naked-eye meteor observing. Of course, for all its accuracy, it is a Working List, so is continually subject to further checks and corrections, based on the best data we had at the time the Calendar was written, thus it is always as well to check the information here fully, taking account of any later changes noted in the IMO's journal WGN or on the IMO website, before going out to observe (and please notify us if you find any anomalies!).

This is a particularly dynamic time for minor shower studies, with video results detecting many weak showers too minor to be visually-observed, as well as sometimes revealing fresh aspects of those already known, and even of the low-activity phases of some of the major showers well away from their maxima. Video has established itself as a valuable tool in meteor studies in recent years, and professional radar meteor examinations have been producing excellent new results as well, but we should not forget the other instrumental techniques available to amateur observers. Telescopic observations can also separate minor shower activity from the omnipresent background sporadics, and detect showers whose meteors are too faint even for current video systems. Still-imaging enables a whole range of studies to be carried out on the brighter meteors particularly, and multi-station observing with still or video cameras can allow orbital data to be established, essential for meteoroid-stream examinations. Showers with radiants too near the Sun for observing by the various optical methods can be detected by forward-scatter radio or radar observations. Some of these showers are given in Table 7, the Working List of Daytime Radio Meteor Streams. Automated radio and radar work also allows 24-hour coverage of meteor activity.

The IMO's aims are to encourage, collect, analyze, and publish combined meteor data obtained from sites all over the globe, to help better our understanding of the meteor activity detectable from the Earth's surface. Thus, we encourage these more specialist forms of observing alongside visual work. Consequently, for best effects, all meteor workers, wherever you are and whatever methods you use to record meteors, should follow the standard IMO observing guidelines when compiling your information, and submit those data promptly to the appropriate Commission for analysis (contact details are at the end of the Calendar). Thanks to the efforts of the many IMO observers worldwide since 1988 that have done this, we have been able to achieve as much as we have to date, including keeping the shower listings vibrant. This is not a matter for complacency however, since it is solely by the continued support of many people across the planet that our steps towards constructing a better and more complete picture of the near-Earth meteoroid flux can proceed.

Although timing predictions are included below on all the more active night-time and daytime shower maxima, as reliably as possible, it is essential to understand that in many cases, such maxima are not known more precisely than to the nearest 1° of solar longitude (even less accurately for the daytime radio showers, which have received little regular attention until quite recently). In addition, variations in individual showers from year to year mean past returns are only a guide as to when even major shower peaks can be expected. As noted already, the information given here may be updated and added-to after the Calendar has been published. Some showers are known to show particle mass-sorting within their meteoroid streams, so the radar, radio, still-imaging, telescopic, video and visual meteor maxima may occur at different times from one another, and not necessarily just in those showers. The majority of data available are for visual shower maxima, so this must be borne in mind when employing other observing techniques.

However and whenever you are able to observe, we wish you all a most successful year's work and very much look forward to receiving your data. Clear skies!

Antihelion Source

The Antihelion Source (ANT) is a large, roughly oval area around α = 30° by δ = 15° in size, centred about 12° east of the solar opposition point on the ecliptic, hence its name. It is not a true shower at all, but is rather a region of sky in which a number of variably, if weakly, active minor showers have their radiants. Until 2006, attempts were made to define specific showers within this complex, but this often proved very difficult for visual observers to achieve. IMO video results from the last decade have shown why, because even instrumentally, it was impossible to define distinct radiants for many of the showers here! Thus we believe currently it is best for observers to simply identify meteors from these streams as coming from the ANT alone. At present, we think the July-August α–Capricornids (CAP), and particularly the δ–Aquariids (SDA), should remain discretely-observable visually from the ANT, so they have been retained on the Working List, but time and plenty of observations will tell, as ever. Later in the year, the strength of the Taurid showers (STA and NTA) means the ANT should be considered inactive while the Taurids are underway, from early September to early December (note this interval has been extended since the 2010 Shower Calendar). To assist observers, a set of charts showing the location for the ANT and any other nearby shower radiants is included here, to complement the numerical positions of Table 6, while comments on the ANT's location and likely activity are given in the quarterly summary notes.

January to March

New Moon falls perfectly for the northern-hemisphere Quadrantid maximum, and moonlight circumstances also favour the southern-hemisphere's α–Centaurid and minor γ–Normid returns. The ANT's radiant centre starts January in south-east Gemini, and crosses Cancer during much of the month, before passing into southern Leo for most of February. It then slips through southern Virgo during March. Likely ANT ZHRs will be < 2, though IMO analyses suggest there may be an ill-defined minor peak with ZHRs ∼ 2 to 3 around λ⊙ ∼ 286°–293° (January 6 to 13 in 2011, much of which has only a waxing crescent Moon, if so), and ZHRs could be ∼ 3 for most of March. The late January to early February spell, during which several new, swift-meteor, minor showers, radiating from the Coma-Leo-Virgo area have been proposed in some recent years, is spoilt by the full to waning Moon for its potential core period, January 20–27. Theoretical approximate timings (rounded to the nearest hour) for the daytime radio shower maxima this quarter are: Capricornids/Sagittariids – February 1, 21h UT; and χ–Capricornids – February 13, 22h UT. Recent radio results have implied the Cap/Sgr maximum may variably fall sometime between February 1–4 however, while activity near the expected χ–Capricornid peak has tended to be slight and up to a day late. Both showers have radiants < 10°–15° west of the Sun at maximum, so cannot be regarded as visual targets even from the southern hemisphere.

spacer

spacer

Quadrantids (QUA)

Active: December 28 – January 12; Maximum: January 4, 01h10m UT (λ⊙ = 283.16°);
ZHR = 120 (can vary ∼ 60–200);
Radiant: α = 230°, δ = +49°; Radiant drift: see Table 6;
V = 41 km/s; r = 2.1 at maximum, but variable;
TFC: α = 242°, δ = +75° and α = 198°, δ = +40° (β > 40° N).
IFC: before 0h local time α = 150°, δ = +70°; after 0h local time α = 180°, δ = +40° and
α = 240°, δ = +70° (β > 40° N).

spacer

New Moon just eight hours after the predicted Quadrantid maximum creates ideal circumstances for observing the shower from northern hemisphere sites this year. From many such places, the shower's radiant is circumpolar, in northern Boötes, attaining a useful elevation only after local midnight, and rising higher in the sky towards morning twilight. This means places at European longitudes east to those of central Asia should be best-placed to record what happens.

However, computations by Jérémie Vaubaillon have suggested the peak could happen at a somewhat different time between roughly 21h UT on January 3 to 06h UT on January 4 (see the diagram on HMO p. 129). The occasional long-pathed shower meteor might be seen from southern hemisphere sites around dawn, but sensible Quadrantid watching cannot be carried out from such places.

The maximum timing above is based on the best-observed return of the shower ever analysed, from IMO 1992 data, confirmed by radio results in most years since 1996. The peak itself is normally short-lived, and can be easily missed in just a few hours of poor northern-winter weather, which may be why the ZHR level apparently fluctuates from year to year, but some genuine variability is probably present too. For instance, visual ZHRs in 2009 persisted for almost fourteen hours at close to their best, with the predicted maximum time falling around an hour or two after the mid-point of this extended interval. An added level of complexity comes from the fact mass-sorting of particles across the meteoroid stream may make fainter objects (radio and telescopic meteors) reach maximum up to 14 hours before the brighter (visual and photographic) ones, so observers should be alert throughout the shower. A few, but apparently not all, years since 2000 seem to have produced a, primarily radio, maximum following the main visual one by some 9–12 hours. Visual confirmation of any repeat of such activity would be welcomed.

VID data recently indicated the QUA may be active weakly for longer than previous visual estimates had inferred, perhaps from December 28 to January 12, compared to just January 1–10 visually (HMO). It is not certain visual observers will be able to follow the shower for so long as yet, as the early and late activity may be too low to be separated from the visual sporadic background. Past observations have suggested the QUA radiant is diffuse away from the maximum too, contracting notably during the peak itself, although this may be a result of the very low activity outside the hours near maximum. Still-imaging and video observations would be particularly welcomed by those investigating this topic, using the IFCs and TFCs given above, along with telescopic results.

α–Centaurids (ACE)

Active: January 28 – February 21; Maximum: February 8, 11h30m UT (λ⊙ = 319.2°);
ZHR = variable, usually ∼ 6, but may reach 25+;
Radiant: α = 210°, δ = −59°; Radiant drift: see Table 6;
V = 56 km/s; r = 2.0.

spacer

In theory, the α–Centaurids are one of the main southern summer high points, from past records supposedly producing many very bright, even fireball-class, objects (meteors of at least magnitude −3), commonly with fine persistent trains. However, the average peak ZHR between 1988–2007 was merely 6 (HMO, p. 130), albeit coverage has frequently been extremely patchy. Despite this, in 1974 and 1980, bursts of only a few hours' duration apparently yielded ZHRs closer to 20–30.

As with many southern hemisphere sources, we have more questions than answers at present, nor do we have any means of telling when, or if, another stronger event might happen. Consequently, imaging and visual observers are urged to be alert at every opportunity. The radiant is nearly circumpolar for much of the sub-equatorial inhabited Earth, and is at a useful elevation from late evening onwards. The Moon is merely a waxing crescent on February 8, and will have set by mid-evening from mid-southerly sites.

γ–Normids (GNO)

Active: February 25 – March 22; Maximum: March 15 (λ⊙ = 354°); ZHR = 6;
Radiant: α = 239°, δ = −50°, Radiant drift: see Table 6;
V = 56 km/s; r = 2.4;
TFC: α = 225°, δ = −26° and α = 215°, δ = −45° (β < 15° S).

spacer

For most of their activity, γ–Normid ZHRs seem to be virtually undetectable above the background sporadic rate. The maximum itself has been reported as quite sharp, and an analysis of IMO data from 1988–2007 showed an average peak ZHR of ∼ 6 at λ⊙ = 354°, with ZHRs < 3 visible on all other dates during the shower (HMO, pp. 131–132). Limited data means this is uncertain, and activity may vary somewhat at times, with occasional broader, or less obvious, maxima having been noted in the past. Results since 1999 have suggested the possibility of a short-lived peak alternatively between λ⊙ ∼ 347°–357°, equivalent to 2011 March 8–18, while video and visual plotting information from the same period agreed on the above radiant position, though this was different to that suggested earlier for the shower. Post-midnight watching yields better results, when the radiant is rising to a reasonable elevation from southern hemisphere sites (the radiant does not rise for many northern ones). The shower badly needs more regular attention, and March's waxing Moon, at first quarter on March 12, means 2011 would be a good year to start, as moonset leaves at least some dark-sky observing time after midnight for virtually the whole potentially extended peak spell. All observing techniques can be employed.

April to June

Meteor activity picks up towards the April-May boundary, though neither of the two shower maxima in late April are observably Moon-free. The Lyrids should peak between about 15h30m UT on April 22 to 02h30m UT on April 23 (and will probably give better rates the closer the maximum falls to 23h UT on the 22nd), while the π–Puppid maximum is due around 04h UT on April 24. Something of the usually-minor π–Puppids may still be visible before moonrise, however, as they are best-seen before local midnight from the southern hemisphere. No unusual activity has been predicted from them for this year. The η–Aquariids in early May are much better-placed, with some dark-sky observing possible for the minor η–Lyrids a few days afterwards as well. Later in May and throughout June, most of the meteor action switches to the daytime sky, with six shower maxima expected during this time. Although occasional meteors from the ο–Cetids and Arietids have been claimed as seen from tropical and southern hemisphere sites visually in past years, ZHRs cannot be sensibly calculated from such observations. For radio observers, the theoretical UT peaks for these showers are as follows: April Piscids - April 20, 22h; δ–Piscids - April 24, 22h; ε–Arietids - May 9, 22h; May Arietids - May 16, 21h; ο–Cetids - May 20, 20h; Arietids - June 7, 23h; ζ–Perseids - June 9, 23h; β–Taurids - June 28, 22h. Signs of most were found in radio data from 1994–2007, though some are difficult to define individually because of their proximity to other radiants. There seems to be a modest recurring peak around April 24, perhaps due to combined rates from the first three showers listed here, for instance, while the Arietid and ζ–Perseid maxima tend to blend into one another, producing a strong radio signature for several days in early to mid June. There are indications these two June shower maxima now each occur up to a day later than indicated above.

The ANT should be relatively strong, with ZHRs of 3 to 4 found in recent investigations through till mid April, and again around late April to early May, late May to early June, and late June to early July. At other times, the ZHR seems to be below ∼ 2 to 3. The radiant area drifts from south-east Virgo through Libra in April, then across the northern part of Scorpius to southern Ophiuchus in May, and on into Sagittarius for much of June.

For northern observers, circumstances for checking on any potential June Lyrids are very poor this year around their theoretical peak on June 16 (the shower is not currently given on the Working List, as it has not been found in recent investigations), but will have improved for possible June Boötid hunting later in June.

spacer

η–Aquariids (ETA)

Active: April 19 – May 28; Maximum: May 6, 13h UT (λ⊙ = 45.5°);
ZHR = 70 (periodically variable, ∼ 40–85);
Radiant: α = 338°, δ = −01°; Radiant drift: see Table 6;
V = 66 km/s; r = 2.4;
TFC: α = 319°, δ = +10° and α = 321°, δ = −23° (β < 20° S).

spacer

A fine, rich stream associated with Comet 1P/Halley, like the Orionids of October, but one visible for only a few hours before dawn, essentially from tropical and southern hemisphere sites. Some useful results have come even from places around 40° N latitude in recent years however, and occasional meteors have been reported from further north, but the shower would benefit from increased observer activity generally. The fast and often bright meteors make the wait for radiant-rise worthwhile, and many events leave glowing persistent trains after them. While the radiant is still low, η–Aquariids tend to have very long paths, which can mean observers underestimate the angular speeds of the meteors, so extra care is needed when making such reports.

A relatively broad maximum, sometimes with a variable number of submaxima, usually occurs in early May. Fresh IMO analyses in recent years, based on data collected between 1984–2001, have shown that ZHRs are generally above 30 between about May 3–10, and that the peak rates appear to be variable on a roughly 12-year timescale. The most recent highest rates should have happened around 2008–2010, if this Jupiter-influenced cycle was borne-out, so ZHRs should be falling back from this peak in 2011, according to this idea.

Although activity in 2007 seemed unexpectedly weaker than normal (peak ZHRs maybe only ∼ 50), rates seemed to have been much better in 2008 and 2009 (ZHRs of ∼ 85 and 65 respectively). There seemed to have been no additional influence following the protracted, sometimes stronger than expected, Orionid returns from October 2006–2009 inclusive in the η–Aquariids in those years, as far as the available results allowed. New Moon on May 3 creates perfect viewing conditions for whatever the shower provides in 2011. All forms of observing can be used to study it, with radio work allowing activity to be followed even from many northern latitude sites throughout the daylight morning hours. The radiant culminates at about 08h local time.

η–Lyrids (ELY)

Active: May 3–14; Maximum: May 9 (λ⊙ = 48°); ZHR = 3;
Radiant: α = 287°, δ = +44°; Radiant drift: see Table 6;
V = 43 km/s; r = 3.0;
TFC: α = 325°, δ = +40° or α = 285°, δ = +15°, and α = 260°, δ = +30° (β > 10° S).

spacer

This recent introduction to the Visual Working List is associated with Comet C/1983 H1 IRAS-Araki-Alcock, though it appears to be only a weak shower. Most of the recent observational data on it has come from purely video results, which have been used to update the parameters above here, though they also suggested the maximum might fall up to two days later, at λ⊙ = 50° (so on 2011 May 11). There is little evidence to suggest it has been definitely observed visually as yet, but the discussion on p. 137 of HMO had more information. Video work, diligent telescopic, or perhaps equally careful visual, plotting will be needed to separate any potential η–Lyrids from the sporadics. The general radiant area is usefully on-view all night from the northern hemisphere (primarily), while the waxing Moon, at first quarter on May 10, sets to leave most of the post-midnight sky dark enough for useful observing even by May 11.

June Boötids (JBO)

Active: June 22 – July 2; Maximum: June 27, 21h UT (λ⊙ = 95.7°), but see text;
ZHR = variable, 0–100+;
Radiant: α = 224°, δ = +48°; Radiant drift: see Table 6;
V = 18 km/s; r = 2.2;
TFC: α = 156°, δ = +64° and α = 289°, δ = +67° (β = 25°–60° N).

spacer

This source was reinstated on the Working List after its unexpected return of 1998, when ZHRs of 50–100+ were visible for more than half a day. Another outburst of similar length, but with ZHRs of ∼ 20–50 was observed on 2004 June 23, a date before definite activity had previously been recorded from this shower.

Consequently, the shower's start date was altered to try to ensure future activity so early is caught, and we encourage all observers to routinely monitor throughout the proposed activity period, in case of fresh outbursts. The predicted possible activity in 2010 was still to come when this text was prepared. Prior to 1998, only three more probable returns had been detected, in 1916, 1921 and 1927, and with no significant reports between 1928 and 1997, it seemed likely these meteoroids no longer encountered Earth. The dynamics of the stream were poorly understood, although recent theoretical modelling has improved our comprehension. The shower's parent, Comet 7P/Pons-Winnecke, has an orbit that now lies around 0.24 astronomical units outside the Earth's at its closest approach. Its most recent perihelion passage was in 2008 September. Clearly, the 1998 and 2004 returns resulted from material shed by the comet in the past which now lies on slightly different orbits to the comet itself. Dust trails laid down at various perihelion returns during the 19th century seem to have been responsible for the last two main outbursts. No predictions for activity are in-force for 2011, but conditions for checking are very favourable from the mid-northern latitudes where the radiant is best-seen (indeed it is usefully-observable almost all night from here), with only a waning crescent Moon on June 27. The prolonged – in some places continuous – twilight will cause difficulties, however. VID has suggested some June Boötids may be visible in most years around June 20–25, but with activity largely negligible except near λ⊙ = 92° (2011 June 24), radiating from an area about ten degrees south of the visual one found in 1998 and 2004, close to α α = 216°, δ = +38°.

July to September

The ANT is the chief focus for visual attention during most of July, as its radiant area moves steadily through eastern Sagittarius, then across northern Capricornus into south-west Aquarius. Results suggest the Source may not be especially recognisable after the first few days however, as ZHRs for most of the month seem < 2, and for a time in mid-month even < 1! Activity appears to improve somewhat, with ZHRs ∼ 2 to 3, by late July and through the first half of August. The large ANT radiant area now overlaps that of the minor α–Capricornids in July-August, but the δ–Aquarids are strong enough, and the Piscis Austrinids have a radiant probably distant enough from the ANT area, that both should still be separable from it, particularly from the southern hemisphere.

By the best from the major, hopelessly moonlit, Perseids (whose maximum is due sometime between ∼ 01h–13h30m UT on August 13, perhaps highest near 06h UT) and the almost equally moonlit κ–Cygnid peak (probably around August 18, though VID suggested a maximum nearer August 14, and showed there was some uncertainty in the radiant position), ANT ZHRs will likely have dropped back below 2 again, as the radiant tracks on through Aquarius, and into western Pisces by the end of August.

The September-October near-Auriga sources have been re-examined again since the 2010 Shower Calendar was published, and more changes have been suggested here for them, with alterations in radiant positions, maxima and active dates. The former September Perseids have not been detected by VID at all, but the September ε–Perseids and the δ-Aurigids (for a shorter period) apparently were, so we now list a "new" SPE and the DAU. Further changes have been made to the Taurids, as the Southern Taurids were detected in early September according to VID, but the Northern Taurids were not found similarly until late October. Consequently, their parameters have been changed, as has also that for the ANT, which the Taurids are now considered to replace from September 10 into early December. In the first ten days of September, ANT rates continue from their radiant in Pisces, albeit with ZHRs probably no better than 2–3.

spacer

ε–Eridanids (EER): Scarcely nothing is known of this possible minor shower. It has been suggested as associated with Comet C/1854 L1 Klinkerfues. The IMO's Visual Meteor Database includes what little information is suspected about it, that its activity is most likely from about September 9–12, with a maximum around September 10 from a radiant at α = 57°, δ = −12°. No atmospheric velocity is known for the meteors. In 2011, Jérémie Vaubaillon has indicated the Earth may encounter the 1600 AD dust trail from Comet Klinkerfues, which could produce ZHRs of ∼ 40 around 19h34m UT on September 12. The age of the trail, not to mention the uncertain reality of the shower, means this is extremely uncertain, but observers need to be alert to the possibility. As this proposed encounter date is at the end of the previously-suggested activity period, it may be ε–Eridanid meteors could occur beyond September 12 this year. The radiant can be observed from both hemispheres, but is more favourable from south of the equator. For mid-northern sites, it rises around local midnight, attaining a useful elevation by ∼ 02h. From mid-southern latitudes, the radiant rises around 22h and can be viably observed from midnight onwards. This assumes the theoretical radiant location is correct, of course! Unhappily, full Moon falls on September 12, thus visual work will be extremely difficult. If the shower is as strong as predicted though, video and radio systems may be able to detect it, and if the timing proves accurate, central Indian Ocean locations eastwards across the western half of Australia (or equivalent longitudes) would be better-placed to cover anything that happens. The shower should not be confused with other potential Eridanid minor sources, particularly the ε–Eridanids discovered in analyses of minor shower data during the 1960s by Russian analyst Alexandra Terentjeva, which was suggested as active from about November 6–28.

For daylight radio observers, the interest of May-June has waned, but there remain the visually-impossible γ–Leonids (peak due near August 25, 22h UT, albeit not found in recent radio results), and a tricky visual shower, the Sextantids. Their maximum is expected on September 27, around 22h UT, but possibly it may occur a day earlier. In 1999 a strong return was detected at λ⊙ ∼ 186°, equivalent to 2011 September 29, while in 2002, the September 27 peak was not found, but one around September 29–30 was! It seems plausible that several minor maxima in early October may also be due to this radio shower. New Moon creates near-ideal conditions for visual observers hoping to catch some Sextantids in the pre-dawn of late September, though radiant-rise is less than an hour before sunrise in either hemisphere.

Piscis Austrinids (PAU)

Active: July 15 – August 10; Maximum: July 28 (λ⊙ = 125°); ZHR = 5;
Radiant: α = 341°, δ = −30°; Radiant drift: see Table 6;
V = 35 km/s; r = 3.2;
TFC: α = 255° to 0°, δ = 0° to +15°, choose pairs separated by about 30° in α (β < 30° N).

Very little information has been collected on the Piscis Austrinids in recent decades, so the details on the shower are not well-confirmed, and it seems possible the ZHR may be a little optimistic. However, that impression may be due simply to the large amount of northern hemisphere summer data, and the almost complete lack of southern hemisphere winter results, on it. The stream seems to be rich in faint meteors, rather like the nearby ANT and SDA, so telescopic work is advisable to try to establish more about it. July's second New Moon on the 30th means perfect viewing circumstances for all three southern-sky showers maxima this month.

δ–Aquariids (SDA)

Active: July 12 – August 23; Maximum: July 30 (λ⊙ = 127°); ZHR = 16;
Radiant: α = 339°, δ = −16°; Radiant drift: see Table 6;
V = 41 km/s; r = 3.2;
TFC: α = 255° to 0°, δ = 0° to +15°, choose pairs separated by about 30° in α (β < 40° N).

Like the PAU and ANT, SDA meteors are often faint, thus are suitable targets for telescopic observing, although enough brighter members exist to make visual and imaging observations worth the effort too, primarily from more southerly sites. Radio work can pick up the SDA as well, and indeed the shower has sometimes given a surprisingly strong radio signature. Careful visual plotting is advised, to help with accurate shower association. The SDA/PAU/ANT/CAP radiants are well above the horizon for much of the night, and the SDA enjoys identical dark-sky conditions in the second half of the nights near its maximum to the PAU. Its peak may not be quite so sharp as the single date here might imply, with perhaps similar ZHRs from July 28–30. Its rates have been suspected of some variability at times too, though not in the more recent investigations.

α–Capricornids (CAP)

Active: July 3 – August 15; Maximum: July 30 (λ⊙ = 127°); ZHR = 5;
Radiant: α = 307°, δ = −10°; Radiant drift: see Table 6;
V = 23 km/s; r = 2.5;
TFC: α = 255° to 0°, δ = 0° to +15°, choose pairs separated by about 30° in α (β < 40° N);
IFC: α = 300°, δ = +10° (β > 45° N), α = 320°, δ = −5° (β 0° to 45° N), α = 300°, δ = −25°
(β < 0°).

The CAP and SDA were both definitely detected visually in former years, standing out against the much weaker other radiants supposed active in Capricornus-Aquarius then. Whether the CAP can still be detected as visually separate from the new ANT radiant area is unclear, as its radiant now partly overlaps that of the large ANT region. Observers failed to find a clear maximum for the shower in 2009, which does not augur well, though it had been hoped their bright, at times fireball-class brilliance, combined with their low apparent velocities, might make them distinctive enough to still be detected by means other than video. A minor enhancement of CAP ZHRs to ∼ 10 was noted in 1995 by European IMO observers. Recent results suggest the maximum may continue into July 31.

α–Aurigids (AUR)

Active: August 28 – September 5; Maximum: September 1, 13h UT (λ⊙ = 158.6°); ZHR = 6;
Radiant: α = 91°, δ = +39°; Radiant drift: see Table 6;
V = 66 km/s; r = 2.6;
TFC: α = 052°, δ = +60°; α = 043°, δ = +39° and α = 023°, δ = +41° (β > 10° S).

spacer

The shower's active dates have been changed to be more in-line with the VID findings, and the radiant position adjusted too. In the past, the shower has produced short, unexpected, outbursts at times, with EZHRs of ∼ 30–40 recorded in 1935, 1986 and 1994, although they have not been monitored regularly until very recently, so other events may have been missed. Only three watchers in total covered the 1986 and 1994 outbursts, for instance!

While badly moonlit, the first predicted outburst happened roughly as expected in 2007, producing short-lived EZHRs of ∼ 130 for western North America, with many bright meteors. Radio data suggested there was a 'tail' to that event where more faint meteors continued for maybe an hour after the strongest peak, but visual observers could not confirm this, probably due to the moonlit sky. The newly-revised AUR radiant reaches a useful elevation only after ∼ 01h local time, and although no predictions for unusual activity have been made for 2011, the nearly-new Moon provides ideal skies for whatever may happen.

September ε–Perseids (SPE)

Active: September 4–14; Maximum: September 9, 22h UT (λ⊙ = 166.7°); ZHR = 5;
Radiant: α = 47°, δ = +40°; Radiant drift: see Table 6;
V = 64 km/s; r = 3.0;
TFC: α = 030°, δ = +55°; α = 028°, δ = +35° and α = 025°, δ = +40° (β > 10° S).

spacer

This radiant could not be located by VID at all. Instead, what seems to be the formerly-little-known September ε–Perseid minor shower, or a radiant close to its expected position, was detected. This radiant was apparently that responsible for producing an unexpected outburst of swift, bright meteors on 2008 September 9 (from a radiant entred somewhere between α = 47.5° to 49°, δ = +38° to +43°).

Consequently, the September Perseids have been dropped from the Working List, now replaced by the September ε–Perseids, with adjusted activity dates and radiant position. The maximum timing was detected from the recent video analysis and was virtually coincident with the 2008 bright-meteor outburst. The waxing gibbous Moon, though just three days from full on September 9, will set for mid-northern sites in time to leave several hours of dark skies for watching still, as the radiant area remains well on-view all night from about 22h–23h local time onwards.

δ–Aurigids (DAU)

Active: September 20 – October 16; Maximum: October 3 (λ⊙ = 190°); ZHR = 2;
Radiant: α = 100°, δ = +44°; Radiant drift: see Table 6;
V = 64 km/s; r = 2.9;
TFC: α = 80°, δ = +55°; α =
gipoco.com is neither affiliated with the authors of this page nor responsible for its contents. This is a safe-cache copy of the original web site.