spacer

spacer

About PLOS Currents: Muscular Dystrophy

PLOS Currents: Muscular Dystrophy is an open-access publication from PLOS for the rapid communication of new research results and operational analyses derived from the study or management of all types of muscular dystrophy. It is produced with support from Parent Project Muscular Dystrophy.  

spacer

PLOS Currents Goals

PLOS Currents is a publication channel that aims to address four facets of scholarly research communications: 1) Decrease publishing time with a streamlined review and production process. 2) Focus: Publish research within a focused research community. 3) Flexibility: Unlock rigid article formats to reflect diversity and broaden forms of research disseminated. 4) Revisions: Free the static research article with revisions that document research in progress.

spacer

PLOS Currents Archive and Indexing

All PLOS Currents articles are publicly archived in PubMed Central and indexed in Scopus and PubMed.

The C2A domain in dysferlin is important for association with MG53 (TRIM72)

· Advanced Diagnostics and Biomarkers

In skeletal muscle, Mitsugumin 53 (MG53), also known as muscle-specific tripartite motif 72, reportedly interacts with dysferlin to regulate membrane repair. To better understand the interactions between dysferlin and MG53, we conducted immunoprecipitation (IP) and pull-down assays. Based on IP assays, the C2A domain in dysferlin associated with MG53. MG53 reportedly exists as a monomer, a homodimer, or an oligomer, depending on the redox state. Based on pull-down assays, wild-type dysferlin associated with MG53 dimers in a Ca2+-dependent manner, but MG53 oligomers associated with both wild-type and C2A-mutant dysferlin in a Ca2+-independent manner. In pull-down assays, a pathogenic missense mutation in the C2A domain (W52R-C2A) inhibited the association between dysferlin and MG53 dimers, but another missense mutation (V67D-C2A) altered the calcium sensitivity of the association between the C2A domain and MG53 dimers. In contrast to the multimers, the MG53 monomers did not interact with wild-type or C2A mutant dysferlin in pull-down assays. These results indicated that the C2A domain in dysferlin is important for the Ca2+-dependent association with MG53 dimers and that dysferlin may associate with MG53 dimers in response to the influx of Ca2+ that occurs during membrane injury.
To examine the biological role of the association between dysferlin and MG53, we co-expressed EGFP-dysferlin with RFP-tagged wild-type MG53 or RFP-tagged mutant MG53 (RFP-C242A-MG53) in mouse skeletal muscle, and observed molecular behavior during sarcolemmal repair; it has been reported that the C242A-MG53 mutant forms dimers, but not oligomers. In response to membrane wounding, dysferlin accumulated at the injury site within 1 second; this dysferlin accumulation was followed by the accumulation of wild-type MG53. However, accumulation of RFP-C242A MG53 at the wounded site was impaired relative to that of RFP-wild-type MG53. Co-transfection of RFP-C242A MG53 inhibited the recruitment of dysferlin to the sarcolemmal injury site. We also examined the molecular behavior of GFP-wild-type MG53 during sarcolemmal repair in dysferlin-deficient mice which show progressive muscular dystrophy, and found that GFP-MG53 accumulated at the wound similar to wild-type mice. Our data indicate that the coordination between dysferlin and MG53 plays an important role in efficient sarcolemmal repair.

The Effects of Glucocorticoid and Voluntary Exercise Treatment on the Development of Thoracolumbar Kyphosis in Dystrophin-Deficient Mice

· Muscular Dystrophy

The development of spinal curvature deformities is a hallmark of muscular dystrophy. While glucocorticoid treatment has been shown to prolong muscle function in dystrophic mice, its effects on the development of dystrophinopathic spinal deformation are poorly understood. In this study, we test the effects of glucocorticoid treatment on the onset of thoracolumbar kyphosis in the dystrophin-deficient mdx mouse using voluntary running exercise to exacerbate muscle fibrosis. We measure the kyphotic index, erector spinae muscle fibrosis, and vertebral bone histomorphometry in 4-month-old mdx mice in four groups: sedentary control, exercise-treated (continuous voluntary access to an activity wheel), glucocorticoid-treated, and glucocorticoid + exercise-treated. Exercise treated mice were found to have significantly lower kyphotic index (i.e., greater kyphosis) and greater muscle fibrosis relative to controls (p < 0.05). However, the deleterious effect of exercise on KI and muscle fibrosis was prevented by glucocorticoid treatment. Some differences in bone histological parameters were observed between treatment groups, suggesting there is a complex relationship between dystrophic muscular changes and vertebral bone mass. Our findings indicate glucocorticoid treatment delays the onset of thoracodorsal spinal deformation in mdx mice.

A proteasome inhibitor fails to attenuate dystrophic pathology in mdx mice

· Muscular Dystrophy

Dystrophin deficiency leads to increased proteasome activity in skeletal muscle. Previous observations suggest short-term inhibition of the proteasome restores dystrophin expression. Contrary to our hypothesis, eight days of MG-132 administration to mdx mice increased susceptibility to contraction induced injury and Evan’s blue dye penetration compared to controls. Following six weeks of MG-132 administration muscle function was similar to control animals. These data suggest that proteasome inhibition does not reduce the severity of muscle dysfunction caused by dystrophin-deficiency.

Clinic-Based Infant Screening for Duchenne Muscular Dystrophy: A Feasibility Study

· Muscular Dystrophy

Purpose. The purpose of this study was to assess the desirability of Duchenne muscular dystrophy (DMD) screening, the effectiveness of the consent process, and the feasibility of conducting DMD screening in a pediatric office.

Methods. Infant males who attended a 12-month routine well-child visit at a participating pediatric clinic were screened for DMD. Parents and providers completed post-screening questionnaires to assess their experiences with and attitudes toward screening.

Results. A total of 264 male infants were screened for DMD. Approximately 78% of parents indicated support of voluntary DMD screening and 91% of providers were in favor of screening for DMD. About 75% of parents correctly answered three of five questions testing their knowledge of DMD screening.

Conclusion. DMD screening is feasible in a pediatric office when conducted as part of a research study. Infant screening for DMD eventually could be offered in pediatric health care provider offices as an optional public health service outside of newborn screening.

Restoration of dystrophin expression using the Sleeping Beauty transposon

The Sleeping beauty (SB) system is a non-viral DNA based vector that has been used to stably integrate therapeutic genes into disease models. Here we report the SB system is capable of stably integrating the ΔR4-R23/CTΔ micro-dystrophin gene into a conditionally immortal dystrophin deficient muscle cell-line, H2K SF1, a murine cell model for Duchenne muscular dystrophy. Genetically corrected H2K SF1 cells retained their myogenic properties in vitro. Moreover, upon transplantation ΔR4-R23/CTΔ micro-dystrophin expression was detected within mdx nu/nu mice. Our data suggests the SB system is an effective way of stably integrating therapeutic genes into myogenic cells.

DuchenneConnect Registry Report

· Muscular Dystrophy

Research activity in Duchenne/Becker muscular dystrophy has surged in recent years, requiring robust information networks to support ongoing development. Established by Parent Project Muscular Dystrophy in late 2007, DuchenneConnect was created to bridge the information gap between care providers, researchers and the patient community, thereby addressing medical care needs and accelerating the pace of therapeutic advancements. This report represents the first in a new series that will be regularly shared by DuchenneConnect and PPMD. Data in this report was collected through June 2011.

Dysferlin-deficient immortalized human myoblasts and myotubes as a useful tool to study dysferlinopathy

Dysferlin gene mutations causing LGMD2B are associated with defects in muscle membrane repair. Four stable cell lines have been established from primary human dysferlin-deficient myoblasts harbouring different mutations in the dysferlin gene. We have compared immortalized human myoblasts and myotubes carrying disease-causing mutations in dysferlin to their wild-type counterparts. Fusion of myoblasts into myotubes and expression of muscle-specific differentiation markers were investigated with special emphasis on dysferlin protein expression, subcellular localization and function in membrane repair. We found that the immortalized myoblasts and myotubes were virtually indistinguishable from their parental cell line for all of the criteria we investigated. They therefore will provide a very useful tool to further investigate dysferlin function and pathophysiology as well as to test therapeutic strategies at the cellular level.

Repression of nuclear CELF activity can rescue CELF-regulated alternative splicing defects in skeletal muscle models of myotonic dystrophy

Myotonic dystrophy type 1 (DM1) is caused by the expansion of CUG repeats in the 3’ UTR of DMPK transcripts. DM1 pathogenesis has been attributed in part to alternative splicing dysregulation via elevation of CUG-BP, Elav-like family member 1 (CELF1). Several therapeutic approaches have been tested in cells and mice, but no previous studies had specifically targeted CELF1. Here, we show that repressing CELF activity rescues CELF-dependent alternative splicing in cell culture and transgenic mouse models of DM1. CELF-independent splicing, however, remained dysregulated. These data highlight both the potential and limitations of targeting CELF1 for the treatment of DM1.

Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype

Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the average daily distance (ranging from 0.003 ± 0.005 km to 4.48 ± 0.96 km), culminating in a wide range (0.040 km to 67.24 km) of total cumulative distances run by individuals. There was also variation in the number and length of run/rest cycles per night, and the average running rate. Correlation analyses demonstrated that in the quadriceps muscle, a low number of high distance run/rest cycles was the most consistent indicator for increased tissue damage. The amount of rest time between running bouts was a key factor associated with gastrocnemius damage. These data emphasize the need for detailed analysis of individual running performance, consideration of the length of wheel exposure time, and the selection of appropriate muscle groups for analysis, when applying the use of voluntary wheel running to disease exacerbation and/or pre-clinical testing of the efficacy of therapeutic agents in the mdx mouse.

Percent-Predicted 6-Minute Walk Distance in Duchenne Muscular Dystrophy to Account for Maturational Influences

We recently described a modified version of the 6-minute walk test (6MWT) for Duchenne muscular dystrophy (DMD) based partly on the American Thoracic Society (ATS) guidelines. This measure has shown reliability, validity and utility as a primary outcome measure in DMD clinical trials. Because loss of muscle function in DMD occurs against the background of normal childhood growth and development, younger children with DMD can show increase in distance walked during 6MWT over ~1 year despite progressive muscular impairment. In this study, we compare 6-minute walk distance (6MWD) data from DMD boys (n=17) and typically developing control subjects (n=22) to existing normative data from age- and sex-matched children and adolescents. An age- and height-based equation fitted to normative data by Geiger and colleagues was used to convert 6MWD to a percent-predicted (%-predicted) value in boys with DMD. Analysis of %-predicted 6MWD data represents a method to account for normal growth and development, and shows that gains in function at early ages represents stable rather than improving abilities in boys with DMD. Boys with DMD from 4-7 years of age maintain a stable 6MWD approximately 80% of that of typically developing peers, with the deficit progressing at a variable rate thereafter.

Older »
gipoco.com is neither affiliated with the authors of this page nor responsible for its contents. This is a safe-cache copy of the original web site.