spacer

spacer

About PLOS Currents

PLOS Currents is a new publication that aims to minimize the delay between the generation and publication of new research. The content is peer-reviewed, citable, publicly archived in PubMed, and indexed in Scopus. By facilitating and accelerating the sharing of new findings and ideas, we hope that PLOS Currents will accelerate the research cycle itself. To contact PLOS Currents please email currents@plos.org.

spacer

PLOS Currents Archives and Indexing

All PLOS Currents articles are archived in PubMed Central , and indexed in PubMed and Scopus.

Standard maximum likelihood analyses of alignments with gaps can be statistically inconsistent

· Tree of Life

Background
Most statistical methods for phylogenetic estimation in use today treat a gap (generally representing an insertion or deletion, i.e., indel) within the input sequence alignment as missing data. However, the statistical properties of this treatment of indels have not been fully investigated.

Results
We prove that maximum likelihood phylogeny estimation, treating indels as missing data, can be statistically inconsistent for a general (and rather simple) model of sequence evolution, even when given the true alignment. Therefore, accurate phylogeny estimation cannot be guaranteed for maximum likelihood analyses, even given arbitrarily long sequences, when indels are present and treated as missing data.

Conclusions
Our result shows that the standard statistical techniques used to estimate phylogenies from sequence alignments may have unfavorable statistical properties, even when the sequence alignment is accurate and the assumed substitution model matches the generation model. This suggests that the recent research focus on developing statistical methods that treat indel events properly is an important direction for phylogeny estimation.

Phylogenetic discordance of human and canine carcinoembryonic antigen (CEA, CEACAM) families, but striking identity of the CEA receptors will impact comparative oncology studies.

· Tree of Life

Comparative oncology aims at speeding up developments for both, human and companion animal cancer patients. Following this line, carcinoembryonic antigen (CEA, CEACAM5) could be a therapeutic target not only for human but also for canine (Canis lupus familiaris; dog) patients. CEACAM5 interacts with CEA-receptor (CEAR) in the cytoplasm of human cancer cells. Our aim was, therefore, to phylogenetically verify the antigenic relationship of CEACAM molecules and CEAR in human and canine cancer.
Anti-human CEACAM5 antibody Col-1, previously being applied for cancer diagnosis in dogs, immunohistochemically reacted to 23 out of 30 canine mammary cancer samples. In immunoblot analyses Col-1 specifically detected human CEACAM5 at 180 kDa in human colon cancer cells HT29, and the canine antigen at 60, 120, or 180 kDa in CF33 and CF41 mammary carcinoma cells as well as in spontaneous mammary tumors. While according to phylogenicity canine CEACAM1 molecules should be most closely related to human CEACAM5, Col-1 did not react with canine CEACAM1, -23, -24, -25, -28 or -30 transfected to canine TLM-1 cells. By flow cytometry the Col-1 target molecule was localized intracellularly in canine CF33 and CF41 cells, in contrast to membranous and cytoplasmic expression of human CEACAM5 in HT29. Col-1 incubation had neither effect on canine nor human cancer cell proliferation. Yet, Col-1 treatment decreased AKT-phosphorylation in canine CF33 cells possibly suggestive of anti-apoptotic function, whereas Col-1 increased AKT-phosphorylation in human HT29 cells. We report further a 99% amino acid similarity of human and canine CEA receptor (CEAR) within the phylogenetic tree. CEAR could be detected in four canine cancer cell lines by immunoblot and intracellularly in 10 out of 10 mammary cancer specimens from dog by immunohistochemistry. Whether the specific canine Col-1 target molecule may as functional analogue to human CEACAM5 act as ligand to canine CEAR, remains to be defined. This study demonstrates the limitations of comparative oncology due to the complex functional evolution of the different CEACAM molecules in humans versus dogs. In contrast, CEAR may be a comprehensive interspecies target for novel cancer therapeutics.

Neotropical and North American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales – an indication for concerted migration?

· Tree of Life

Neotropical Vaccinioideae (Ericaceae) are evolutionarily rather young and presumably of Northern Hemisphere origin. Vaccinioideae are highly dependent on their mycorrhizal symbionts and Sebacinales (basidiomycetes) were previously found to be the dominant mycobionts of Andean Clade Vaccinioideae (Neotropical Vaccinieae). We were interested to see whether the North American Vaccinioideae reached the Neotropics with their mycobionts or whether they acquired new, local Sebacinales.

We investigated Sebacinales of 58 individuals of Vaccinioideae from Ecuador, Panama and North America to examine whether mycobionts of each region are distantly or closely related.
We isolated the ITS of the ribosomal nuclear DNA in order to infer a molecular phylogeny of Sebacinales and to determine Molecular Operational Taxonomic Units (MOTUs). MOTU delimitation was based on a 3% threshold of ITS variability and conducted with complete linkage clustering. The analyses revealed that most Sebacinales from Ecuador, Panama and North America are closely related and that two MOTUs out of 33 have a distribution ranging from the Neotropics to the Pacific Northwest of North America. The data suggest that Neotropical and temperate Vaccinioideae of North America share their Sebacinales communities and that plants and fungi migrated together.

Cocos: Constructing multi-domain protein phylogenies

· Tree of Life

Phylogenies of multi-domain proteins have to incorporate macro-evolutionary events, which dramatically increases the complexity of their construction.
We present an application to infer ancestral multi-domain proteins given a species tree and domain phylogenies. As the individual domain phylogenies are often incongruent, we provide diagnostics for the identification and reconciliation of implausible topologies. We implement and extend a suggested algorithmic approach by Behzadi and Vingron (2006).

Resolving the phylogenetic and taxonomic relationship of Xanthomonas and Stenotrophomonas strains using complete rpoB gene sequence

· Tree of Life

The phytopathogenic genus Xanthomonas comprises numerous species and pathovars described primarily on their host and tissue specificities. Stenotrophomonas maltophilia , which is non-phytopathogenic and taxonomically closely related to Xanthomonas , has undergone several classifications from Pseudomonas to Xanthomonas and finally to Stenotrophomonas . In this study, we have investigated the phylogenetic and taxonomic status of these members using the complete RNA polymerase beta-subunit ( rpoB ) gene sequences available from their sequenced genomes. Not only did we obtain a phylogenetic tree for xanthomonads, but rpoB gene sequence information has also resolved the taxonomic relationship of X. axonopodis pathovars, X. albilineans and other Xanthomonas strains, with the most marked evidence being that Stenotrophomonas is synonymous to Xanthomonas . This study has revealed the power and potential of complete rpoB gene sequence in taxonomic, phylogenetic and evolutionary studies on Xanthomonas and Stenotrophomonas generic complex.

Molecular data and ploidal levels indicate several putative allopolyploidization events in the genus Potentilla (Rosaceae)

· Tree of Life

Several naturally occurring hybrids in Potentilla (Rosaceae) have been reported, but no molecular evidence has so far been available to test these hypotheses of hybridization. We have compared a nuclear and a chloroplast gene tree to identify topological incongruences that may indicate hybridization events in the genus. Furthermore, the monophyly and phylogenetic position of the proposed segregated genera Argentina, Ivesia and Horkelia have been tested. The systematic signal from the two morphological characters, style- and anther shape, has also been investigated by ancestral state reconstruction, to elucidate how well these characters concur with the results of the molecular phylogenies.

Six major clades, Anserina, Alba, Fragarioides, Reptans, ivesioid and Argentea, have been identified within genus Potentilla. Horkelia, Ivesia and Horkeliella (the ivesioid clade), form a monophyletic group nested within Potentilla. Furthermore, the origin of the proposed segregated genus Argentina (the Anserina clade) is uncertain but not in conflict with a new generic status of the group. We also found style morphology to be an informative character that reflects the phylogenetic relationships within Potentilla. Five well-supported incongruences were found between the nuclear and the chloroplast phylogenies, and three of these involved polyploid taxa. However, further investigations, using low copy molecular markers, are required to infer the phylogeny of these species and to test the hypothesis of hybrid origin.

Overcoming the effects of rogue taxa: Evolutionary relationships of the bee flies

· Tree of Life

Bombyliidae (~5000 sp.), or bee flies, are a lower brachyceran family of flower-visiting flies that, as larvae, act as parasitoids of other insects. The evolutionary relationships are known from a morphological analysis that yielded minimal support for higher-level groupings. We use the protein-coding gene CAD and 28S rDNA to determine phylogeny and to test the monophyly of existing subfamilies, the divisions Tomophthalmae, and ‘the sand chamber subfamilies’. Additionally, we demonstrate that consensus networks can be used to identify rogue taxa in a Bayesian framework. Pruning rogue taxa post-analysis from the final tree distribution results in increased posterior probabilities. We find 8 subfamilies to be monophyletic and the subfamilies Heterotropinae and Mythicomyiinae to be the earliest diverging lineages. The large subfamily Bombyliinae is found to be polyphyletic and our data does not provide evidence for the monophyly of Tomophthalmae or the ‘sand chamber subfamilies’.

Linking NCBI to Wikipedia: a wiki-based approach

· Tree of Life

The NCBI Taxonomy underpins many bioinformatics and phyloinformatics databases, but by itself provides limited information on the taxa it contains. One readily available source of information on many taxa is Wikipedia. This paper describes iPhylo Linkout, a Semantic wiki that maps taxa in NCBI’s taxonomy database onto corresponding pages in Wikipedia. Storing the mapping in a wiki makes it easy to edit, correct, or otherwise annotate the links between NCBI and Wikipedia. The mapping currently comprises some 53,000 taxa, and is available at iphylo.org/linkout. The links between NCBI and Wikipedia are also made available to NCBI users through the NCBI LinkOut service.

Increased population sampling confirms low genetic divergence among Pteropus (Chiroptera: Pteropodidae) fruit bats of Madagascar and other western Indian Ocean islands

· Tree of Life

Fruit bats of the genus Pteropus occur throughout the Austral-Asian region west to islands off the eastern coast of Africa. Recent phylogenetic analyses of Pteropus from the western Indian Ocean found low sequence divergence and poor phylogenetic resolution among several morphologically defined species. We reexamine the phylogenetic relationships of these taxa by using multiple individuals per species. In addition, we estimate population genetic structure in two well-sampled taxa occurring on Madagascar and the Comoro Islands (P. rufus and P. seychellensis comorensis). Despite finding a similar pattern of low sequence divergence among species, increased sampling provides insight into the phylogeographic history of western Indian Ocean Pteropus, uncovering high levels of gene flow within species.

Hal: an Automated Pipeline for Phylogenetic Analyses of Genomic Data

· Tree of Life

The rapid increase in genomic and genome-scale data is resulting in unprecedented levels of discrete sequence data available for phylogenetic analyses. Major analytical impasses exist, however, prior to analyzing these data with existing phylogenetic software. Obstacles include the management of large data sets without standardized naming conventions, identification and filtering of orthologous clusters of proteins or genes, and the assembly of alignments of orthologous sequence data into individual and concatenated super alignments. Here we report the production of an automated pipeline, Hal that produces multiple alignments and trees from genomic data. These alignments can be produced by a choice of four alignment programs and analyzed by a variety of phylogenetic programs. In short, the Hal pipeline connects the programs BLASTP, MCL, user specified alignment programs, GBlocks, ProtTest and user specified phylogenetic programs to produce species trees. The script is available at sourceforge (sourceforge.net/projects/bio-hal/). The results from an example analysis of Kingdom Fungi are briefly discussed.

Older »
gipoco.com is neither affiliated with the authors of this page nor responsible for its contents. This is a safe-cache copy of the original web site.