Pluralism in mathematics: the multiverse view in set theory and the question of whether every mathematical statement has a definite truth value, Rutgers, March 2013

Posted on by Joel David Hamkins
Reply

This is a talk for the Rutgers Logic Seminar on March 25th, 2013.  Simon Thomas specifically requested that a give a talk aimed at philosophers.

Abstract.  I shall describe the debate on pluralism in the philosophy of set theory, specifically on the question of whether every mathematical and set-theoretic assertion has a definite truth value. A traditional Platonist view in set theory, which I call the universe view, holds that there is an absolute background concept of set and a corresponding absolute background set-theoretic universe in which every set-theoretic assertion has a final, definitive truth value. I shall try to tease apart two often-blurred aspects of this perspective, namely, to separate the claim that the set-theoretic universe has a real mathematical existence from the claim that it is unique. A competing view, the multiverse view, accepts the former claim and rejects the latter, by holding that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe, and a corresponding pluralism of set-theoretic truths. After framing the dispute, I shall argue that the multiverse position explains our experience with the enormous diversity of set-theoretic possibility, a phenomenon that is one of the central set-theoretic discoveries of the past fifty years and one which challenges the universe view. In particular, I shall argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.

Some of this material arises in my recent articles:

  • The set-theoretic multiverse
  • The multiverse perspective on the axiom of constructibility
  • Is the dream solution of the continuum hypothesis possible to achieve?
Posted in Talks | Tagged CH, forcing, multiverse, pluralism, Rutgers | Leave a reply

The omega one of chess, CUNY, March, 2013

Posted on by Joel David Hamkins
Reply

This is a talk for the New York Set Theory Seminar on March 1, 2013.

This talk will be based on my recent paper with C. D. A. Evans, Transfinite game values in infinite chess.

Infinite chess is chess played on an infinite chessboard.  Since checkmate, when it occurs, does so after finitely many moves, this is technically what is known as an open game, and is therefore subject to the theory of open games, including the theory of ordinal game values.  In this talk, I will give a general introduction to the theory of ordinal game values for ordinal games, before diving into several examples illustrating high transfinite game values in infinite chess.  The supremum of these values is the omega one of chess, denoted by $\omega_1^{\mathfrak{Ch}}$ in the context of finite positions and by $\omega_1^{\mathfrak{Ch}_{\hskip-1.5ex {\ \atop\sim}}}$ in the context of all positions, including those with infinitely many pieces. For lower bounds, we have specific positions with transfinite game values of $\omega$, $\omega^2$, $\omega^2\cdot k$ and $\omega^3$. By embedding trees into chess, we show that there is a computable infinite chess position that is a win for white if the players are required to play according to a deterministic computable strategy, but which is a draw without that restriction. Finally, we prove that every countable ordinal arises as the game value of a position in infinite three-dimensional chess, and consequently the omega one of infinite three-dimensional chess is as large as it can be, namely, true $\omega_1$.

Posted in Talks | Tagged games, infinite chess | Leave a reply

Transfinite game values in infinite chess

Posted on by Joel David Hamkins
2
  • C. D. A. Evans and J. D. Hamkins, “Transfinite game values in infinite chess.” (under review)  
    Citation arχiv
    @ARTICLE{EvansHamkins:TransfiniteGameValuesInInfiniteChess,
    AUTHOR = {C. D. A. Evans and Joel David Hamkins},
    TITLE = {Transfinite game values in infinite chess},
    JOURNAL = {},
    YEAR = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {under review},
    eprint = {1302.4377},
    url = {jdh.hamkins.org/game-values-in-infinite-chess},
    abstract = {},
    keywords = {},
    source = {},
    }

In this article, C. D. A. Evans  and I investigate the transfinite game values arising in infinite chess, providing both upper and lower bounds on the supremum of these values—the omega one of chess—denoted by $\omega_1^{\mathfrak{Ch}}$ in the context of finite positions and by $\omega_1^{\mathfrak{Ch}_{\!\!\!\!\sim}}$ in the context of all positions, including those with infinitely many pieces. For lower bounds, we present specific positions with transfinite game values of $\omega$, $\omega^2$, $\omega^2\cdot k$ and $\omega^3$. By embedding trees into chess, we show that there is a computable infinite chess position that is a win for white if the players are required to play according to a deterministic computable strategy, but which is a draw without that restriction. Finally, we prove that every countable ordinal arises as the game value of a position in infinite three-dimensional chess, and consequently the omega one of infinite three-dimensional chess is as large as it can be, namely, true $\omega_1$.

The article is 38 pages, with 18 figures detailing many interesting positions of infinite chess. My co-author Cory Evans holds the chess title of U.S. National Master.

Wästlund’s MathOverflow question | My answer there

Let’s display here a few of the interesting positions.

First, a simple new position with value $\omega$.  The main line of play here calls for black to move his center rook up to arbitrary height, and then white slowly rolls the king into the rook for checkmate. For example, 1…Re10 2.Rf5+ Ke6 3.Qd5+ Ke7 4.Rf7+ Ke8 5.Qd7+ Ke9 6.Rf9#.  By playing the rook higher on the first move, black can force this main line of play have any desired finite length.  We have further variations with more black rooks and white king.

spacer

Next, consider an infinite position with value $\omega^2$. The central black rook, currently attacked by a pawn, may be moved up by black arbitrarily high, where it will be captured by a white pawn, which opens a hole in the pawn column. White may systematically advance pawns below this hole in order eventually to free up the pieces at the bottom that release the mating material. But with each white pawn advance, black embarks on an arbitrarily long round of harassing checks on the white king.

spacer

Here is a similar position with value $\omega^2$, which we call, ”releasing the hordes”, since white aims ultimately to open the portcullis and release the queens into the mating chamber at right. The black rook ascends to arbitrary height, and white aims to advance pawns, but black embarks on arbitrarily long harassing check campaigns to delay each white pawn advance.

spacer

Next, by iterating this idea, we produce a position with value $\omega^2\cdot 4$.  We have in effect a series of four such rook towers, where each one must be completed before the next is activated, using the “lock and key” concept explained in the paper.

spacer

We can arrange the towers so that black may in effect choose how many rook towers come into play, and thus he can play to a position with value $\omega^2\cdot k$ for any desired $k$, making the position overall have value $\omega^3$.

spacer

Another interesting thing we noticed is that there is a computable position in infinite chess, such that in the category of computable play, it is a win for white—white has a computable strategy defeating any computable strategy of black—but in the category of arbitrary play, both players have a drawing strategy. Thus, our judgment of whether a position is a win or a draw depends on whether we insist that players play according to a deterministic computable procedure or not.

The basic idea for this is to have a computable tree with no computable infinite branch. When black plays computably, he will inevitably be trapped in a dead-end.

spacer

In the paper, we conjecture that the omega one of chess is as large as it can possibly be, namely, the Church-Kleene ordinal $\omega_1^{CK}$ in the context of finite positions, and true $\omega_1$ in the context of all positions.

Our idea for proving this conjecture, unfortunately, does not quite fit into two-dimensional chess geometry, but we were able to make the idea work in infinite **three-dimensional** chess. In the last section of the article, we prove:

Theorem. Every countable ordinal arises as the game value of an infinite position of infinite three-dimensional chess. Thus, the omega one of infinite three dimensional chess is as large as it could possibly be, true $\omega_1$.

Here is a part of the position. Imagine the layers stacked atop each other, with $\alpha$ at the bottom and further layers below and above. The black king had entered at $\alpha$e4, was checked from below and has just moved to $\beta$e5. Pushing a pawn with check, white continues with 1.$\alpha$e4+ K$\gamma$e6 2.$\beta$e5+ K$\delta$e7 3.$\gamma$e6+ K$\epsilon$e8 4.$\delta$e7+, forcing black to climb the stairs (the pawn advance 1.$\alpha$e4+ was protected by a corresponding pawn below, since black had just been checked at $\alpha$e4).

spacer

The overall argument works in higher dimensional chess, as well as three-dimensional chess that has only finite extent in the third dimension $\mathbb{Z}\times\mathbb{Z}\times k$, for $k$ above 25 or so.

Posted in Publications | Tagged chess, combinatorics, games, infinite chess | 2 Replies

On the axiom of constructibility and Maddy’s conception of restrictive theories, Logic Workshop, February 2013

Posted on by Joel David Hamkins
3

This is a talk for the CUNY Logic Workshop on February 15, 2013.

This talk will be based on my paper, A multiverse perspective on the axiom of constructibility.

Set-theorists often argue against the axiom of constructibility $V=L$ on the grounds that it is restrictive, that we have no reason to suppose that every set should be constructible and that it places an artificial limitation on set-theoretic possibility to suppose that every set is constructible.  Penelope Maddy, in her work on naturalism in mathematics, sought to explain this perspective by means of the MAXIMIZE principle, and further to give substance to the concept of what it means for a theory to be restrictive, as a purely formal property of the theory.

In this talk, I shall criticize Maddy’s specific proposal.  For example, it turns out that the fairly-interpreted-in relation on theories is not transitive, and similarly the maximizes-over and strongly-maximizes-over relations are not transitive.  Further, the theory ZFC + `there is a proper class of inaccessible cardinals’ is formally restrictive on Maddy’s proposal, although this is not what she had desired.

Ultimately, I argue that the $V\neq L$ via maximize position loses its force on a multiverse conception of set theory, in light of the classical facts that models of set theory can generally be extended to (taller) models of $V=L$.  In particular, every countable model of set theory is a transitive set inside a model of $V=L$.  I shall conclude the talk by explaining various senses in which $V=L$ remains compatible with strength in set theory.

Posted in Talks | Tagged constructible universe, countable models, multiverse, NYC, V=L | 3 Replies

Math for six-year-olds

Posted on by Joel David Hamkins
10

Today I went into my daughter’s first-grade classroom, full of six-year-old girls, and gave a presentation about Möbius bands.

spacer We cut strips of paper and at first curled them into simple bands, cylinders, which we proved had two sides by coloring them one color on the outside and another color on the inside.  Next, we cut strips and curled them around, but added a twist, to make a true Möbius band.

spacer

A Möbius band

These, of course, have only one side, a fact that the children proved by coloring it one color all the way around. And we observed that a Möbius band has only one edge.

spacer

A Möbius-like band, with two twists

We explored what happens with two twists, or more twists, and also what happens when you cut a Möbius band down the center, all the way around.

spacer

Möbius band cut down the center

It is very interesting to cut a Möbius band on a line that is one-third of the way in from an edge, all the way around. What happens? Make your prediction before unraveling the pieces–how many pieces will there be? Will they be all the same size? How many twists will they have?

Overall, the whole presentation was a lot of fun. The girls were extremely curious about everything, and experimented with additional twists and additional ways of cutting.  It seemed to be just the right amount of mathematical thinking, cutting and coloring for a first-grade class.  To be sure, without prompting the girls made various Möbius earrings, headbands and bracelets, which I had to admit were fairly cool. One girl asked, “is this really mathematics?”

It seems I may be back in the first-grade classroom this spring, and I have in mind to teach them all how to beat their parents at Nim.

Posted in Exposition, Teaching | Tagged kids, Möbius, teaching | 10 Replies

Superstrong cardinals are never Laver indestructible, and neither are extendible, almost huge and rank-into-rank cardinals, CUNY, January 2013

Posted on by Joel David Hamkins
4

This is a talk for the CUNY Set Theory Seminar on February 1, 2013, 10:00 am.

Abstract.  Although the large cardinal indestructibility phenomenon, initiated with Laver’s seminal 1978 result that any supercompact cardinal $\kappa$ can be made indestructible by $\lt\kappa$-directed closed forcing and continued with the Gitik-Shelah treatment of strong cardinals, is by now nearly pervasive in set theory, nevertheless I shall show that no superstrong strong cardinal—and hence also no $1$-extendible cardinal, no almost huge cardinal and no rank-into-rank cardinal—can be made indestructible, even by comparatively mild forcing: all such cardinals $\kappa$ are destroyed by $\text{Add}(\kappa,1)$, by $\text{Add}(\kappa,\kappa^+)$, by $\text{Add}(\kappa^+,1)$ and by many other commonly considered forcing notions.

This is very recent joint work with Konstantinos Tsaprounis and Joan Bagaria.

nylogic.org | Set Theory Seminar |

Posted in Talks | Tagged extendible, forcing, indestructibility, large cardinals, rank-into-rank, superstrong | 4 Replies

The use and value of mathoverflow

Posted on by Joel David Hamkins
Reply

François Dorais has created a discussion on meta.mathoverflow, How is mathoverflow useful for me? in which he is soliciting response from MO users.  Here is what I wrote there:

The principal draw of mathoverflow for me is the unending supply of extremely interesting mathematics, an eternal fountain of fascinating questions and answers. The mathematics here is simply compelling.

I feel that mathoverflow has enlarged me as a mathematician. I have learned a huge amount here in the past few years, particularly concerning how my subject relates to other parts of mathematics. I’ve read some really great answers that opened up new perspectives for me. But just as importantly, I’ve learned a lot when coming up with my own answers. It often happens that someone asks a question in another part of mathematics that I can see at bottom has to do with how something I know about relates to their area, and so in order to answer, I must learn enough about this other subject in order to see the connection through. How fulfilling it is when a question that is originally opaque to me, because I hadn’t known enough about this other topic, becomes clear enough for me to have an answer. Meanwhile, mathoverflow has also helped me to solidify my knowledge of my own research area, often through the exercise of writing up a clear summary account of a familiar mathematical issue or by thinking about issues arising in a question concerning confusing or difficult aspects of a familiar tool or method.

Mathoverflow has also taught me a lot about good mathematical exposition, both by the example of other’s high quality writing and by the immediate feedback we all get on our posts. This feedback reveals what kind of mathematical explanation is valued by the general mathematical community, in a direct way that one does not usually get so well when writing a paper or g