-->
spacer
  • spacer
  • spacer
  • spacer
  • spacer
  • Menu Close
spacer
Menu Close
spacer Advanced Filter spacer

How Coal Affects Water Quality: State of the Science

What we know about the impacts of coal handling on waterways.

spacer

En route from Seattle to China, the Selendang Ayu breaks up in Alaska in 2004. (Photo from US Coast Guard.)

spacer

En route from Seattle to China, the Selendang Ayu breaks up in Alaska in 2004. (Photo from US Coast Guard.)

  • Facebook
  • Twitter
  • Google+
  • Print
  • Email

Share How Coal Affects Water Quality: State of the Science by Email

spacer
Author: Eric de Place and David Kershner
(@Eric_deP) on March 20, 2013 at 10:15 am
This article is part of the series Northwest Coal & Oil Exports

After a recent spill at a British Columbia marine coal export terminal, the general manager was quoted in a local newspaper saying:

There’s a lot of misinformation around coal. Coal is a naturally-occurring mineral. It is not toxic.

Leaving aside his non sequitur—plenty of naturally-occurring minerals are toxic—he’s right that coal is subject to a lot of misinformation. There is a lot we should know, but don’t, about coal. For example, we don’t know nearly enough about how coal and coal dust near terminals can alter freshwater and marine environments.

There’s no doubt that coal often contains a range of nasty pollutants, including uranium, thorium, arsenic, mercury, lead, and other elements that are toxic at low concentrations. But it’s also believed to be true that most of those substances do not enter the environment, at least not in large quantities, until the coal is mined, burned, or otherwise tampered with.

Despite the fact that the global coal trade moves somewhere in the range of a billion tons of coal on the oceans each year, there has been very little research into the effects of coal and coal dust on waterways and the ecosystems they support. As the Northwest considers adding as much as 140 million tons of coal export capacity on rivers and coasts that are home to sensitive and endangered species, it is a question that demands rigorous inquiry. What follows is our attempt to summarize the most germane findings from published scientific research.

In recent years, scientists have studied contamination resulting from a coal ship that sank in 1891 near Victoria, British Columbia. Studies in 2009 and 2012, for instance, indicated that the sunken vessel remains to this day a source of polycyclic aromatic hydrocarbons (PAHs) and other pollutants, but that their contribution is smaller and less harmful than Victoria’s (notoriously bad) sewage outfall and other man-made sources.

Other studies of PAH contamination from coal have been similarly inconclusive, mainly owing to a lack of adequate investigation. In a 2009 literature review, researchers at the University of Vienna observed that PAHs from unburnt coal may be an important source of aquatic contamination, but they concluded that the issue has “not been well studied” and that “the data is presently insufficient” to determine whether PAHs from coal pose a severe risk for humans or bottom-dwelling animals.

Apart from the presence of pollutants like PAHs in coal, the simple presence of coal dust has been shown to cause ecological harm. In South Africa, for example, a 2004 study found that coal dust from the Richards Bay Coal Terminal harms local mangrove trees and related ecosystems by impairing the ability of the trees to photosynthesize. The researchers noted:

…[coal] dust on the undersurface of leaves is not removed by wind, rain, or even physical washing. The undersurface of the leaves, as well as the rough surfaces of twigs, branches and trunk, tend to accumulate dust and appear black.

In 2006, here in the Northwest, Ryan Johnson and Marc Bustin of the University of British Columbia evaluated 22 years of coal dust dispersal around the Westshore Coal Terminal, located just north of the US border. They found widespread coal dust on the surface of the water near the terminal, observing a film of fine coal particles floating on the water 200 meters east of the vessel loading dock, even when no coal loading was in progress and no ship was docked. They pointed out that ordinary tidal currents could disperse the coal particles 2.5 miles from the coal loading facility, and potentially over 56 miles under extreme conditions.

On the sea floor, Johnson and Bustin were able to document a steady accretion of coal dust. They found that coal concentrations in marine sediments effectively doubled in the period covered by their analysis, increasing from a mean concentration of 1.8 percent in 1977 to 3.6 percent in 1999. Concentrations in the immediate area of the coal terminal were as high as 11.9 percent in the later samples, with quantifiable concentrations 1.5 miles away.

All of which, they conclude, could harm the flora and fauna living on the sea bottom. Oxidizing coal particles reduce the oxygen available for clams, mussels, barnacles, and crab larvae, with damage reverberating up the food chain. In fact, the bottom-dwelling invertebrates affected by coal dust make up a large share of the seasonal food for salmon and herring. (In fairness, however, the researchers also noted that low oxygen conditions deriving from coal dust would likely only occur within 300 meters of the terminal, and they claim that sea creatures in that area are more likely to be affected by physical changes to their environment, such as by dredging, than by oxygen depletion.)

More illustratively, Johnson and Bustin point out that some crabs from the Roberts Bank area, where the coal terminal is located, have been reported to have a “darker coal-coloration” and that local fisherman “find the darker color more difficult to market.” Presumably the darker coloration results from coal dust staining the shells of crab near the terminal or perhaps from adaptation to a darkening of the sea floor from coal dust deposits.

By far the most comprehensive scientific study of coal dust in the marine environment is Michael J. Ahrens and Donald J. Morrisey’s 2005 literature review of the risks of unburnt coal in the marine environment. Although they highlight the potential dangers of coal to the marine environment, they also emphasize how inadequately the issue has been studied:

…it was surprising that there was relatively little information on the bioavailability of contaminants from coal, or on the biological effects at the levels of organisms, populations or assemblages directly related to coal, either in the laboratory or field. This lack of information on the ecological effects of unburnt coal was unexpected in view of the common occurrence of coal in the marine environment…

Unexpected, and potentially problematic for regions like the Northwest that are considering very large expansions in coal infrastructure in sensitive aquatic areas.

Ahrens and Morrisey were able to identify several studies that examined the effects of coal dust pollution on fish and shellfish. Unfortunately, most of the studies are old, poorly designed, or inconclusive. For example, a 1963 study found that coal washery solids in relatively low concentrations reduced the growth rate of exposed trout. An even older study from the late 1930s linked fish mortality to the irritation caused by coal particles entering a freshwater stream. And a 1979 study by an EPA researcher found that to PAH contamination from coal reduced the spawning success of fathead minnows from 90 percent to 36 percent.

Perhaps most worrisome for the Northwest, a 1997 study by government researchers in Canada found that coal dust altered genetic expression in juvenile Chinook salmon. Although the consequences could be very serious, the study’s author

gipoco.com is neither affiliated with the authors of this page nor responsible for its contents. This is a safe-cache copy of the original web site.