Dionaea is meant to be a nepenthes successor, embedding python as scripting language, using libemu to detect shellcodes, supporting ipv6 and tls


How it works

dionaea intention is to trap malware exploiting vulnerabilities exposed by services offerd to a network, the ultimate goal is gaining a copy of the malware.

Security

As Software is likely to have bugs, bugs in software offering network services can be exploitable, and dionaea is software offering network services, it is likely dionaea has exploitable bugs.
Of course we try to avoid it, but if nobody would fail when trying hard, we would not need software such as dionaea.
So, in order to minimize the impact, dionaea can drop privileges, and chroot.
To be able to run certain actions which require privileges, after dionaea dropped them, dionaea creates a child process at startup, and asks the child process to run actions which require elevated privileges. This does not guarantee anything, but it should be harder to get gain root access to the system from an unprivileged user in a chroot environment.

Network Connectivity

Given the softwares intented use, network io is crucial. All network io is within the main process in a so called non-blocking manner. To understand nonblocking, imagine you have many pipes infront of you, and these pipes can send you something, and you can put something into the pipe. If you want to put something into a pipe, while it is crowded, you'd have to wait, if you want to get something from a pipe, and there is nothing, you'd have to wait too. Doing this pipe game non-blocking means you won't wait for the pipes to be write/readable, you'll get something off the pipes once data arrives, and write once the pipe is not crowded. If you want to write a large chunk to the pipe, and the pipe is crowded after a small piece, you note the rest of the chunk you wanted to write, and wait for the pipe to get ready.
DNS resolves are done using libudns, which is a neat non-blocking dns resolving library with support for AAAA records and chained cnames.
So much about non-blocking.
dionaea uses libev to get notified once it can act on a socket, read or write.
dionaea can offer services via tcp/udp and tls for IPv4 and IPv6, and can apply rate limiting and accounting limits per connections to tcp and tls connections - if required.

Protocols

Network services speak a certain language, this language is called protocol.
When we started deploying honeypots, you could trap worms just by opening a single port, and wait for them to connect and send you an url where you could download a copy of the worm. The service getting attacked was the backdoor of the bagle mailworm, and it did not require and interaction.
Later on, the exploitations of real services got more complex, and you had to reply something to the worm to fool him.
Nowadays worms use API to access services, before sending their payload. To allow easy adjustments to the procotol, dionaea implements the protocols in python. There is a glue between the network layer which is done in the c programming language and the embedded python scripting language, which allows using the non-blocking connections in python. This has some benefits, for example we can use non-blocking tls connections in python, and we even get rate limiting on them (if required), where pythons own io does not offer such things. On the other hand, it is much more comfortable to implement protocols in python than doing the same in c.

SMB

The main protocol offerd by dionaea is SMB. SMB has a decent history of remote exploitable bugs, and is a very popular target for worms. dionaeas SMB implementation makes use of an python3 adapted version of scapy. As scapys own version of SMB was pretty limited, almost everything but the Field declarations had to be rewritten. The SMB emulation written for dionaea is used by the mwcollectd low interaction honeypot too.
Besides the known attacks on SMB dionaea supports uploading files to smb shares.
Adding new DCE remote procedure calls is a good start to get into dionaea code, you can use:
SELECT
        COUNT(*),
        dcerpcrequests.dcerpcrequest_uuid,
        dcerpcservice_name,
        dcerpcrequest_opnum 
FROM
        dcerpcrequests 
        JOIN dcerpcservices ON(dcerpcrequests.dcerpcrequest_uuid == dcerpcservices.dcerpcservice_uuid) 
        LEFT OUTER JOIN dcerpcserviceops ON(dcerpcserviceops.dcerpcserviceop_opnum = dcerpcrequest_opnum AND dcerpcservices.dcerpcservice = dcerpcserviceops.dcerpcservice )  
WHERE
        dcerpcserviceop_name IS NULL
GROUP BY        
        dcerpcrequests.dcerpcrequest_uuid,dcerpcservice_name,dcerpcrequest_opnum
ORDER BY
        COUNT(*) DESC;

to identify potential usefull targets of unknown dcerpc calls using the data you gathered and stored in your logsql database. Patches are appreciated.

http

Dionaea supports http on port 80 as well as https, but there is no code making use of the data gathered on these ports.
For https, the self-signed ssl certificate is created at startup.

ftp

Dionaea provives a basic ftp server on port 21, it can create directories and upload and download files. From my own experience there are very little automated attacks on ftp services and I'm yet to see something interesting happening on port 21.

tftp

Written to test the udp connection code, dionaea provides a tftp server on port 69, which can serve files. Even though there were vulnerabilities in tftp services, I'm yet to see an automated attack on tftp services.

MSSQL

This module implements the Tabular Data Stream protocol which is used by Microsoft SQL Server. It listens to tcp/1433 and allows clients to login. It can decode queries run on the database, but as there is no database, dionaea can't reply, and there is no further action. Typically we always get the same query:

exec sp_server_info 1 exec sp_server_info 2 exec sp_server_info 500 select 501,NULL,1 where 'a'='A' select 504,c.name,c.description,c.definition from master.dbo.syscharsets c,master.dbo.syscharsets c1,master.dbo.sysconfigures f where f.config=123 and f.value=c1.id and c1.csid=c.id set textsize 2147483647 set arithabort on

Refer to the blog for more information.
Patches would be appreciated.

MySQL

This module implements the MySQL wire stream protocol - backed up by sqlite as database. Please refer to 2011-05-15 Extending Dionaea for more information.

SIP (VoIP)

This is a VoIP module for the honeypot dionaea. The VoIP protocol used is SIP since it is the de facto standard for VoIP today. In contrast to some other VoIP honeypots, this module doesn't connect to an external VoIP registrar/server. It simply waits for incoming SIP messages (e.g. OPTIONS or even INVITE), logs all data as honeypot incidents and/or binary data dumps (RTP traffic), and reacts accordingly, for instance by creating a SIP session including an RTP audio channel. As sophisticated exploits within the SIP payload are not very common yet, the honeypot module doesn't pass any code to dionaea's code emulation engine. This will be implemented if we spot such malicious messages. The main features of the VoIP module are:
Personalities
A personality defines how to handle a request. At least the 'default' personality MUST exist. The following options are available per personality.
serve
A list of IP addresses to use this personality for.
handle
List of SIP methods to handle.
SIP Users
You can easily add, change or remove users by editing the SQLite file specified by the 'users = ""' parameter in the config file. All users are specified in the users table.
username
Specifies the name of the user. This value is treated as regular expression. See Python: Regular Expressions for more information.
password
The password.
personality
The user is only available in the personality specified by this value. You can define a personality in the config file.
pickup_delay_min
This is an integer value. Let the phone ring for at least this number of seconds.
pickup_delay_max
This is an integer value. Maximum number of seconds to wait before dionaea picks up the phone.
action
This value isn't in use, yet.
sdp
The name of the SDP to use. See table 'sdp'.
SDP
All SDPs can be defined in the sdp table in the users database.
name
Name of the SDP
sdp
The value to use as SDP
The following values are available in the SDP definition.
{addrtype}
Address type. (IP4 or IP6)
{unicast_address}
RTP address
{audio_port}
Dionaea audio port.
{video_port}
Dionaea video port.
The following control parameters are available in the SDP definition.
[audio_port]...content...[/audio_port]
The content is only available in the output if the audio_port value is set.
[video_port]...content...[/video_port]
The content is only available in the output if the video_port value is set.
Example:
v=0
o=- 1304279835 1 IN {addrtype} {unicast_address}
s=SIP Session
c=IN {addrtype} {unicast_address}
t=0 0
[audio_port]
m=audio {audio_port} RTP/AVP 111 0 8 9 101 120
a=sendrecv
a=rtpmap:111 Speex/16000/1
a=fmtp:111 sr=16000,mode=any
a=rtpmap:0 PCMU/8000/1
a=rtpmap:8 PCMA/8000/1
a=rtpmap:9 G722/8000/1
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16,32,36
a=rtpmap:120 NSE/8000
a=fmtp:120 192-193
[/audio_port]
[video_port]
m=video {video_port} RTP/AVP 34 96 97
c=IN {addrtype} {unicast_address}
a=rtpmap:34 H263/90000
a=fmtp:34 QCIF=2
a=rtpmap:96 H263-1998/90000
a=fmtp:96 QCIF=2
a=rtpmap:97 H263-N800/90000
[/video_port]
      

Exploitation

Attackers do not seek your service, attackers want to exploit you, they'll chat with the service for some packets, and afterwards sent a payload. dionaea has to detect and evaluate the payload to be able to gain a copy of the malware. In order to do so, dionaea uses libemu.
Given certain circumstances, libemu can detect shellcode, measure the shellcode, and if required even execute the shellcode. Shellcode detection is done by making use of GetPC heuristics, others wrote papers about it, we decided to write libemu to do so. This detection is rather time consuming, and therefore done using threads.
The part of dionaea which takes care of the network io can create a copy of all in/output run for a connection, this copy is passed to the detection facility, which is a tree of detection facilities, at this moment there is only a single leaf, the emu plugin. The emu plugin uses threads and libemu to detect and profile/measure shellcode.
Shellcode measurement/profiling is done by running the shellcode in the libemu vm and recording API calls and arguments. For most shellcode profiling is sufficient, the recorded API calls and arguments reveal enough information to get an idea of the attackers intention and act upon them. For multi-stage shellcode, where the first exploitation stage of the shellcode would retrieve a second shellcode from the attacker, profiling is not sufficient, as we lack the information 'what to do' from the second stage of the shellcode, in this case we need to make use of shellcode execution. Shellcode execution is basically the same as shellcode profiling, the only difference is not recording the api calls, and we allow the shellcode to take certain actions, for example creating a network connection.

Payloads

Once we have the payload, and the profile, dionaea has to guess the intention, and act upon it
Shells - bind/connectback
This payload offers a shell (cmd.exe prompt) to the attacker, either by binding a port and waiting for the attacker to connect to us again, or by connection to the attacker. In both cases, dionaea offers an cmd.exe emulation to the attacker, parses the input, and acts upon the input, usually the instructions download a file via ftp or tftp.
URLDownloadToFile
These shellcodes use the URLDownloadToFile api call to retrieve a file via http, and execute the retrieved file afterwards
Exec
Making use of WinExec, these shellcode execute a single command which has to be parsed and processed like the bind/connectback shell shellcommands.
Multi Stage Payloads
We never know what the second stage is, therefore libemu is used to execute the shellcode in the libemu vm.

Downloads

Once dionaea gained the location of the file the attacker wants it to downloads from the shellcode, dionaea will try to download the file. The protocol to downloads files via tftp and ftp is implemented in python (ftp.py and tftp.py) as part of dionaea, downloading files via http is done in the curl module - which makes use of libcurl's awsome http capabilities. Of course libcurl can run downloads for ftp too, but the ftp services embedded in malware a designed to work with windows ftp.exe client, and fail for others.

Submit

Once dionaea got a copy of the worm attacking her, we may want to store the file locally for further analysis, or submit the file to some 3rd party for further analysis.
dionaea can http/POST the file to several services like CWSandbox, Norman Sandbox or VirusTotal.

Logging

Getting a copy of the malware is cool, getting an overview of the attacks run on your sensor is priceless.
dionaea can write information to a text file, but be aware, dionaeas logging to text files is rather chatty, really chatty, and you do not want to look at the information, if you are not debugging the software or writing some new feature for it.
Of course, you can appy filters to the logging, to limit it to different facilities or levels, but in general you do not want to work with text files.
dionaea uses some internal communication system which is called incidents. An incident has an origin, which is a string, a path, and properties, which can be integers, strings, or a pointer to a connection. Incidents limit to the max, they pass the information required to incident handlers (ihandler). An ihandler can register a path for incidents he wants to get informed about, the pathes are matched in a glob like fashion. Therefore logging information using an ihandler is superior to text logging, you get the information you are looking for, and can write it to a format you choose yourself. This is what the logsql python script does, it is an ihandler, and writes interesting incidents to a sqlite database, one of the benefits of this logging is the ability to cluster incidents based on the initial attack when retrieving the data from the database:
connection 610 smbd tcp accept 10.69.53.52:445 <- 10.65.34.231:2010
 dcerpc request: uuid '3919286a-b10c-11d0-9ba8-00c04fd92ef5' opnum 9
 p0f: genre:'Windows' detail:'XP SP1+, 2000 SP3' uptime:'-1' tos:'' dist:'11' nat:'0' fw:'0'
 profile: [{'return': '0x7c802367', 'args': ['', 'CreateProcessA'], 'call': 'GetProcAddress'}, 
            ...., {'return': '0', 'args': ['0'], 'call': 'ExitThread'}]
 service: bindshell://1957
 connection 611 remoteshell tcp listen 10.69.53.52:1957
   connection 612 remoteshell tcp accept 10.69.53.52:1957 <- 10.65.34.231:2135
     p0f: genre:'Windows' detail:'XP SP1+, 2000 SP3' uptime:'-1' tos:'' dist:'11' nat:'0' fw:'0'
     offer: fxp://1:1@10.65.34.231:8218/ssms.exe
     download: 1d419d615dbe5a238bbaa569b3829a23 fxp://1:1@10.65.34.231:8218/ssms.exe
     connection 613 ftpctrl tcp connect 10.69.53.52:37065 -> 10.65.34.231/None:8218
       connection 614 ftpdata tcp listen 10.69.53.52:62087
         connection 615 ftpdata tcp accept 10.69.53.52:62087 <- 10.65.34.231:2308
           p0f: genre:'Windows' detail:'XP SP1+, 2000 SP3' uptime:'-1' tos:'' dist:'11' nat:'0' fw:'0'
Additionally, you can query the database for many different things, refer to: for more examples how to make use of the database.

Additional to local logging, dionaea can send a contionous stream of its attacks to a xmpp server, which allows creating a distributed setup of sensors with high detail of information for each attack.
Refer to logxmpp and pg_backend for more information about distributed setups using xmpp.

Development

dionaea initial development was funded by the Honeynet Project as part of the Honeynets Summer of Code during 2009. The development process is as open as possible; you can browse the source online and subscribe to RSS updates and submit bugs or patches.

Compiling & Installation

Requirements

Ubuntu

Some packages are provided by the apt-tree, so you don't have to install everything from source
aptitude install libudns-dev libglib2.0-dev libssl-dev libcurl4-openssl-dev \
libreadline-dev libsqlite3-dev python-dev \
libtool automake autoconf build-essential \
subversion git-core \
flex bison \
pkg-config

tar xfz ...

The remaining dependencies have to be installed from source, we will install all dependencies to /opt/dionaea here, so make sure the directory exists, and you are allowed to write it.

libglib (debian <= etch)

If your lack a recent glib, better update your operating system.

liblcfg (all)

git clone git://git.carnivore.it/liblcfg.git liblcfg
cd liblcfg/code
autoreconf -vi
./configure --prefix=/opt/dionaea
make install
cd ..
cd ..

libemu (all)

git clone git://git.carnivore.it/libemu.git libemu
cd libemu
autoreconf -vi
./configure --prefix=/opt/dionaea
make install
cd ..

libnl (linux && optional)

git clone git://git.kernel.org/pub/scm/libs/netlink/libnl.git
cd libnl
autoreconf -vi
export LDFLAGS=-Wl,-rpath,/opt/dionaea/lib
./configure --prefix=/opt/dionaea
make
make install
cd ..

libev (all)

wget dist.schmorp.de/libev/libev-4.04.tar.gz
tar xfz libev-4.04.tar.gz
cd libev-4.04
./configure --prefix=/opt/dionaea
make install
cd ..

Python 3.2

Before installing Python, we will install required dependencies
readline
Should be available for every distribution.
sqlite > 3.3
Should be available for every distribution. If your distributions sqlite version is < 3.3 and does not support triggers, you are doomed, please let me know, I'll write about how broken pythons build scripts are, and document how to to compile it with a user- provided - more recent - sqlite version.
Python
wget www.python.org/ftp/python/3.2.2/Python-3.2.2.tgz
tar xfz Python-3.2.2.tgz
cd Python-3.2.2/
./configure --enable-shared --prefix=/opt/dionaea --with-computed-gotos \
      --enable-ipv6 LDFLAGS="-Wl,-rpath=/opt/dionaea/lib/ -L/usr/lib/x86_64-linux-gnu/"

make
make install

Cython (all)

We have to use cython >= 0.15 as previous releases do not support Python3.2 __hash__'s Py_Hash_type for x86.
wget cython.org/release/Cython-0.15.tar.gz
tar xfz Cython-0.15.tar.gz
cd Cython-0.15
/opt/dionaea/bin/python3 setup.py install
cd ..

udns (!ubuntu)

udns does not use autotools to build.
wget www.corpit.ru/mjt/udns/old/udns_0.0.9.tar.gz
tar xfz udns_0.0.9.tar.gz
cd udns-0.0.9/
./configure
make shared
There is no make install, so we copy the header to our include directory.
 cp udns.h /opt/dionaea/include/
and the lib to our library directory.
 cp *.so* /opt/dionaea/lib/
cd /opt/dionaea/lib
ln -s libudns.so.0 libudns.so
cd -
cd ..

libcurl (all)

Grabbing curl from your distributions maintainer should work, if you run a decent distribution. If not consider upgrading your operating system.

libpcap (most)

To honor the effort, we rely on libpcap 1.1.1. Most distros ship older versions, therefore it is likely you have to install it from source.
wget www.tcpdump.org/release/libpcap-1.1.1.tar.gz
tar xfz libpcap-1.1.1.tar.gz
cd libpcap-1.1.1
./configure --prefix=/opt/dionaea
make
make install
cd ..

OpenSSL (optional)

WARNING: doing this, requires *all* dependencies to be compiled using the same ssl version, so you have to link curl and python to your own openssl build too
If you experience problems with tls connections, install your OpenSSL >= 0.9.8l/1.0.0-beta2, or fall back to cvs for now.
cvs -d anonymous@cvs.openssl.org:/openssl-cvs co openssl
cd openssl
./Configure shared --prefix=/opt/dionaea linux-x86_64
make SHARED_LDFLAGS=-Wl,-rpath,/opt/dionaea/lib   
make install

Compiling dionaea

git clone git://git.carnivore.it/dionaea.git dionaea
then ..
cd dionaea
autoreconf -vi
./configure --with-lcfg-include=/opt/dionaea/include/ \
      --with-lcfg-lib=/opt/dionaea/lib/ \
      --with-python=/opt/dionaea/bin/python3.2 \
      --with-cython-dir=/opt/dionaea/bin \
      --with-udns-include=/opt/dionaea/include/ \
      --with-udns-lib=/opt/dionaea/lib/ \
      --with-emu-include=/opt/dionaea/include/ \
      --with-emu-lib=/opt/dionaea/lib/ \
      --with-gc-include=/usr/include/gc \
      --with-ev-include=/opt/dionaea/include \
      --with-ev-lib=/opt/dionaea/lib \
      --with-nl-include=/opt/dionaea/include \
      --with-nl-lib=/opt/dionaea/lib/ \
      --with-curl-config=/usr/bin/ \
      --with-pcap-include=/opt/dionaea/include \
      --with-pcap-lib=/opt/dionaea/lib/ 
make
make install

Update dionaea

Most updates boil down to a
git pull;
make clean install
But, you always want to make sure your config file is up to date, you can use
/opt/dionaea/etc/dionaea# diff dionaea.conf dionaea.conf.dist

Packages

The packages below are 3rd party provided, which is appreciated. If you have compiled a package for your own distribution, just send me the link.

Running dionaea

The software has some flags you can provide at startup, the -h flags shows the help, the -H includes the default values.
  -c, --config=FILE               use FILE as configuration file
                                    Default value/behaviour: /opt/dionaea/etc/dionaea.conf
  -D, --daemonize                 run as daemon
  -g, --group=GROUP               switch to GROUP after startup (use with -u)
                                    Default value/behaviour: keep current group
  -G, --garbage=[collect|debug]   garbage collect,  usefull to debug memory leaks, 
                                  does NOT work with valgrind
  -h, --help                      display help
  -H, --large-help                display help with default values
  -l, --log-levels=WHAT           which levels to log, valid values 
                                  all, debug, info, message, warning, critical, error
                                  combine using ',', exclude with - prefix
  -L, --log-domains=WHAT          which domains use * and ? wildcards, combine using ',', 
                                  exclude using -
  -u, --user=USER                 switch to USER after startup
                                    Default value/behaviour: keep current user
  -p, --pid-file=FILE             write pid to file
  -r, --chroot=DIR                chroot to DIR after startup
                                    Default value/behaviour: don't chroot
  -V, --version                   show version
  -w, --workingdir=DIR            set the process' working dir to DIR
                                    Default value/behaviour: /opt/dionaea

examples:
# dionaea -l all,-debug -L '*'
# dionaea -l all,-debug -L 'con*,py*'
# dionaea -u nobody -g nogroup -r /opt/dionaea/ -w /opt/dionaea -p /opt/dionaea/var/dionaea.pid

Configuration - dionaea.conf

If you want to change the software, it is really important to understand how it works, therefore please take the time to how it works.
dionaea.conf is the main configuration file, the file controls consists of sections for:

logging

The logging section controls ... logging, you can specify log domains and loglevel for different logfiles.
As dionaea is pretty ... verbose, it is useful to rotate the logfiles using logrotate.
# logrotate requires dionaea to be started with a pidfile
# in this case -p /opt/dionaea/var/run/dionaea.pid
# adjust the path to your needs
/opt/dionaea/var/log/dionaea*.log {
        notifempty
        missingok
        rotate 28
        daily
        delaycompress
        compress
        create 660 root root
        dateext
        postrotate
                kill -HUP `cat /opt/dionaea/var/run/dionaea.pid`
        endscript
}
/etc/logrotate.d/dionaea
processors control the actions done on the bi-directional streams we gain when getting attacked, the default is running the emu processor on them to detect shellcode.
downloads specify where to store downloaded malware.
bistreams specify where to store bi-directional streams, these are pretty useful when debugging, as they allow to replay an attack on ip-level, without messing with pcap&tcpreplay, which never worked for me.
submit specifies where to send files to via http or ftp, you can define a new section within submit if you want to add your own service.
listen sets the addresses dionaea will listen to. The default is all addresses it can find, this mode is call getifaddrs, but you can set it to manual and specify a single address if you want to limit it.
modules is the most powerfull section, as it specifies the modules to load, and the options for each module.
The subsections name is the name of the module dionaea will try to load, most modules got rather simplistic names, the pcap module will use libpcap, the curl module libcurl, the emu module libemu ...
The python module is special, as the python module can load python scripts, which offer services, and each services can have its own options.

modules

pcap

The pcap module uses the libpcap library to detect rejected connection attempts, so even if we do not accept a connection, we can use the information somebody wanted to connect there.

curl

The curl module is used to transfer files from and to servers, it is used to download files via http as well as submitting files to 3rd parties

emu

The emu module is used to detect, profile and - if required - execute shellcode.

python

The python module allows using the python interpreter in dionaea, and allows controlling some scripts dionaea uses
logsql
This section controls the logging to the sqlite database.
logsql does not work when chrooting - python makes the path absolute and fails for requests after chroot().

logsql requires the directory where the logsql.sqlite file resides to be writeable by the user, as well as the logsql.sqlite file itself.
So, if you drop user privs, make sure the user you drop to is allowed to read/write the file and the directory.
chown MYUSER:MYGROUP /opt/dionaea/var/dionaea -R


To query the logsql database, I recommend looking at the readlogsqltree.py script, for visualisation the gnuplotsql script.

The blog on logsql:
logxmpp
This section controls the logging to xmpp services. If you want to use logxmpp, make sure to enable logxmpp in the ihandler section.
Using logxmpp allows you to share your new collected files with other sensors anonymously.

The blog on logxmpp: pg_backend can be used as a backend for xmpp logging sensors.
p0f
Not enabled by default, but recommend: the p0f service, enable by uncommenting p0f in the ihandlers section of the python modules section, and start p0f as suggested in the config. It costs nothing, and gives some pretty cool, even if outdated, informations about the attackers operating system, and you can look them up from the sqlite database, even the rejected connections.
If you face problems, here are some hints.

nfq
The python nfq script is the counterpart to the nfq module. While the nfq module interacts with the kernel, the nfq python script takes care of the required steps to start a new service on the ports.
nfq can intercept incoming tcp connections during the tcp handshake giving your honeypot the possibility to provide service on ports which are not served by default.

As dionaea can not predict which protocol will be spoken on unknown ports, neither implement the protocol by itself, it will connect the attacking host on the same port, and use the attackers server side protocol implementation to reply to the client requests of the attacker therefore dionaea can end up re?exploiting the attackers machine, just by sending him the exploit he sent us.

The technique is a brainchild of Tillmann Werner, who used it within his honeytrap honeypot.
Legal boundaries to such behaviour may be different in each country, as well as ethical boundaries for each individual. From a technical point of view it works, and gives good results.
Learning from the best, I decided to adopt this technique for dionaea.
Besides the legal and ethical issues with this approach, there are some technical things which have to be mentioned So much about the known problems and workarounds ...
If you read that far, you want to use it despite the technical/legal/ethical problems.
So ... You'll need iptables, and you'll have to tell iptables to enqueue packets which would establish a new connection.
I recommend something like this:
iptables -t mangle -A PREROUTING -i eth0 -p tcp -m socket -j ACCEPT
iptables -t mangle -A PREROUTING -i eth0 -p tcp --syn -m state --state NEW -j NFQUEUE --queue-num 5
Explanation:
  1. ACCEPT all connections to existing services
  2. enqueue all other packets to the NFQUEUE

If you have dionaea running on your NAT router, I recommend something like:
iptables -t mangle -A PREROUTING -i ppp0 -p tcp -m socket -j ACCEPT
iptables -t mangle -A PREROUTING -i ppp0 -p tcp --syn -m state --state NEW -j MARK --set-mark 0x1
iptables -A INPUT -i ppp0 -m mark --mark 0x1 -j NFQUEUE
Explanation:
  1. ACCEPT all connections to existing services in mangle::PREROUTING
  2. MARK all other packets
  3. if we see these marked packets on INPUT, queue them

Using something like:

iptables -A INPUT -p tcp --tcp-flags SYN,RST,ACK,FIN SYN -j NFQUEUE --queue-num 5

will enqueue all SYN packets to the NFQUEUE, once you stop dionaea you will not even be able to connect to your ssh daemon.

Even if you add an exemption for ssh like:

iptables -A INPUT -i eth0 -p tcp --syn -m state --state NEW --destination-port ! 22 -j NFQUEUE

dionaea will try to create a new service for every incoming connection, even if there is a service running already.
As it is easy to avoid this, I recommend sticking with the recommendation.
Besides the already mention throttle settings, there are various timeouts for the nfq mirror service in the config.
You can control how long the service will wait for new connections (timeouts.server.listen), and how long the mirror connection will be idle (timeouts.client.idle) and sustain (timeouts.client.sustain).

ihandlers
ihandlers section is used to specify which ihandlers get started by ihandlers.py . You do not want to miss p0f and logsql.
services
services controls which services will get started by services.py

Utils

Dionaea ships with some utils, as these utils are written in python and rely on the python3 interpreter dionaea requires to operate, this software can be found in modules/python/utils.
readlogsqltree - modules/python/readlogsqltree.py
readlogsqltree is a python3 script which queries the logsql sqlite database for attacks, and prints out all related information for every attack.
This is an example for an attack, you get the vulnerability exploited, the time, the attacker, information about the shellcode, the file offered for download, and even the virustotal report for the file.
2010-10-07 20:37:27
  connection 483256 smbd tcp accept 10.0.1.11:445 <- 93.177.176.190:47650 (483256 None)
   dcerpc bind: uuid '4b324fc8-1670-01d3-1278-5a47bf6ee188' (SRVSVC) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid '7d705026-884d-af82-7b3d-961deaeb179a' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid '7f4fdfe9-2be7-4d6b-a5d4-aa3c831503a1' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid '8b52c8fd-cc85-3a74-8b15-29e030cdac16' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid '9acbde5b-25e1-7283-1f10-a3a292e73676' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid '9f7e2197-9e40-bec9-d7eb-a4b0f137fe95' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid 'a71e0ebe-6154-e021-9104-5ae423e682d0' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid 'b3332384-081f-0e95-2c4a-302cc3080783' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid 'c0cdf474-2d09-f37f-beb8-73350c065268' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid 'd89a50ad-b919-f35c-1c99-4153ad1e6075' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc bind: uuid 'ea256ce5-8ae1-c21b-4a17-568829eec306' (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
   dcerpc request: uuid '4b324fc8-1670-01d3-1278-5a47bf6ee188' (SRVSVC) opnum 31 (NetPathCanonicalize (MS08-67))
   profile: [{'return': '0x7df20000', 'args': ['urlmon'], 'call': 'LoadLibraryA'}, {'return': '0', 'args': ['', '


gipoco.com is neither affiliated with the authors of this page nor responsible for its contents. This is a safe-cache copy of the original web site.